Электрический ток (3)

Реферат

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон — «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

9 стр., 4402 слов

Электрический ток и магнитное поле

... постоянный электрический ток. Магнитное поле. Объяснение этого явления возможно с позиции возникновения вокруг проводников особого вида материи - магнитного поля. Силы, с которыми взаимодействуют проводники с током, называются магнитными. Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, ...

Количество электричества и сила тока. Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с).

В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А).

Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение

Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл).

В связи с этим единицей измерения напряжения станет 1 Дж/Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре).

Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление

R = р * L/S

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 мІ. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом Ч ммІ/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.

Таблица 1. Удельное электрическое сопротивление некоторых материалов

Материал

р, Ом Ч мІ/м

Материал

р, Ом Ч мІ/м

Медь

0,017

Платино-иридиевый сплав

0,25

Золото

0,024

Графит

13

Латунь

0,071

Уголь

40

Олово

0,12

Фарфор

1019

Свинец

0,21

Эбонит

1020

Металл или сплав

Серебро

0,016

Манганин (сплав)

0,43

Алюминий

0,028

Константан (сплав)

0,50

Вольфрам

0,055

Ртуть

0,96

Железо

0,1

Нихром (сплав)

1,1

Никелин (сплав)

0,40

Фехраль (сплав)

1,3

Хромель (сплав)

1,5

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое — сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт).

На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Закон Ома. Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии — для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи).

Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца

А = Uit

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:

Р = A/t = Ui

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

U = ir

где r — сопротивление проводника. В таком случае:

А = rt2i

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.

Закон электромагнитной индукции

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания).

Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.).

Эти элементы называются приемниками электрической энергии (электроприемниками).

В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи. В табл. 2 показаны условные обозначения, применяемые при изображении электрических схем.

Таблица 2. Условные обозначения в электросхемах

Элемент гальванический или аккумуляторный

или

Контакты замыкающие с выдержкой времени

Батарея элементов

при замыкании

Генератор электромеханический постоянного тока

при размыкании

Выключатель, контакт замыкающий

при замыкании и размыкании

Выключатель автоматический

Предохранитель плавкий

Контакты контактора и электрического реле:

Обмотка контактора, магнитного пускателя и реле

замыкающие

Лампа накаливания осветительная

размыкающие

переключающие

Лампа газоразрядная осветительная

Конденсатор постоянной емкости

Амперметр и вольтметр

Катушка индуктивности

Резистор постоянный

Диод полупроводниковый

Резистор переменный

Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные электрические цепи — несколько контуров.

Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Режим холостого хода — это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.

Режим короткого замыкания — это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению. В этом случае ток в цепи в 2 раза меньше тока короткого замыкания.

Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.

Последовательное соединение двух резисторов в цепи

В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:

I = I1 = I2

А вот напряжение на их концах суммируется:

U = U1 + U2

Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:

R = R1 + R2

В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:

U1/U2 = R1/R2

Когда два проводника соединяются параллельно, электрическая цепь имеет два разветвления. Точки разветвления проводников называют узлами. В них электрический заряд не накапливается, т. е. электрический заряд, поступающий за определенный промежуток времени в узел, равен заряду, уходящему из узла за то же время. Из этого следует, что:

I = I1 + I2

где I — сила тока в неразветвленной цепи.

При параллельном соединении проводников напряжение на них будет одно и то же. Параллельное соединение проводников показано на рис. 2.

Параллельное соединение двух проводников

Обозначим сопротивления параллельно соединенных двух проводников R1 и R2. Используя закон Ома для участков электрической цепи с данными сопротивлениями, можно выявить, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников, т. е.:

1/R = 1/R1 + 1/R2

Из этого вытекает:

R = R1R2/(R1 + R2)

Данная формула справедлива только для определения общего сопротивления двух проводников, соединенных параллельно. Величину, обратную сопротивлению, называют проводимостью. При параллельном соединении проводников их сопротивления и сила тока связаны соотношением:

I1/I2 = R2/R1

У конденсаторов существует также два вида соединения: последовательное и параллельное.

Последовательное соединение, Последовательное соединение двух конденсаторов

При данном типе соединения действует следующее правило: величина, обратная емкости батареи конденсаторов при последовательном соединении, равна сумме величин, обратных емкостям отдельных конденсаторов. Из этого следует:

1/С = 1/С 1 + 1/С 2 + 1/С 3 + …

При этом типе соединения емкость батареи конденсаторов меньше емкости любого из конденсаторов.

Параллельное соединение, Параллельное соединение двух конденсаторов

В этом случае емкость батареи конденсаторов будет равна сумме электрических емкостей конденсаторов:

С = С 1 + С 2 + С 3 + …

Параллельное соединение источников тока

[Электронный ресурс]//URL: https://inzhpro.ru/referat/nagrev-provodnikov-elektricheskim-tokom/

При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. Напряжение на разомкнутой батарее будет равно напряжению на каждом отдельном источнике, т. е. при параллельном способе соединения ЭДС батареи равна ЭДС одного источника. Сопротивление батареи при параллельном включении источников будет меньше сопротивления одного элемента, потому что в этом случае их проводимости суммируются.

При последовательном соединении источников тока (рис. 6) два соседних источника соединяются между собой противоположными полюсами.

Последовательное соединение источников тока

Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника. Из этого вытекает, что при последовательном соединении ЭДС батареи равна сумме ЭДС источников, включенных в батарею. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.

Основой расчета электрических цепей является определение силы токов в отдельных участках при заданном напряжении и заранее известном сопротивлении отдельных проводников. Для примера возьмем электрическую цепь, такую, как изображено на рис. 7.

Простая электрическая цепь

Допустим, общее напряжение на концах цепи нам известно. Известны также сопротивления R1, R2 … R6 подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (сопротивление амперметра в расчет не принимается).

Следует вычислить силу токов I1, I2, … I6.

В первую очередь, нужно уточнить, сколько последовательных участков имеет данная цепь. Исходя из предложенной схемы, видно, что таких участков три, причем второй и третий содержат разветвления. Допустим, что сопротивления этих участков R1, R’, R». А значит, все сопротивление цепи можно выразить как сумму сопротивлений участков:

R = R1 + R’ + R»

где R’ — общее сопротивление параллельно соединенных резисторов R2, R3 и R4, a R» — общее сопротивление параллельно соединенных резисторов R5 и R6. Применяя закон параллельного соединения, можно вычислить сопротивления R’ и R»:

1/R’ = 1/R2 + 1/R3 + 1/R4 и 1/R» = 1/R5 + 1/R6

Для того чтобы определить силу тока в неразветвленной цепи с помощью закона Ома, нужно знать общее сопротивление цепи при заданном напряжении. Для этого следует воспользоваться формулой:

I = U/R

Из всего вышеизложенного можно вывести, что I = I1.

Но для определения силы тока в отдельных ветвях следует сначала вычислить напряжение на отдельных участках последовательных цепей. Опять же с помощью закона Ома можно записать:

  • U1 = IR1;
  • U2 = IR’;
  • U3 = IR»

Теперь, зная напряжение на отдельных участках, можно определить силу тока в отдельных ветвях:

  • I2 = U2/R2;
  • I3 = U2/R3;
  • I4 = U2/R4;
  • I5 = U3/R5;
  • I6 = U3/R6

Бывают случаи, когда нужно вычислить сопротивления отдельных участков цепи по уже известным напряжениям, силе токов и сопротивлении других участков, а также определить нужное напряжение по заданным сопротивлениям и силе токов. Метод расчета электрических цепей всегда одинаков и основан на законе Ома.

электрический ток резистор конденсатор

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.