Генератор гармонических колебаний на операционных усилителях

Реферат

Генератором гармонических колебаний называют устройство, без постороннего возбуждения преобразующее энергию источника питания в энергию гармонических колебаний. Схемотехнически генератор – это усилитель с глубокой положительной обратной связью. Глубина ПОС подбирается такой, при которой усилитель самовозбуждается и генерирует незатухающие колебания.

Различают генераторы с внешней и внутренней ПОС. Однако, исходя из условий технического задания к курсовому проекту, генераторы с внутренней ПОС не рассматриваются.

Генератор гармонических колебаний на операционных усилителях 1

Генераторы с внешней ПОС реализуются на усилителе, с выхода которого часть энергии колебания возвращается на вход. Такой генератор представим структурной схемой, показанной на рис. 1. Он состоит из усилителя К и цепи ПОС g. Частотная избирательность, цепи ПОС может обеспечиваться при помощи LC-контуров, пьезоэлектрических и электромеханических резонаторов, а также RC-цепей. Наиболее распространены LC- и RC-генераторы.

Частота колебаний в LC-генераторе f г близка к резонансной частоте контура: f0 .

Генератор гармонических колебаний на операционных усилителях 2

Отсюда видно, что для генерирования колебаний с низкими частотами требуются большие индуктивности и емкости, применение которых ни технологически, ни конструктивно не оправдано.

Частота колебаний RC-генераторов пропорциональна частоте среза RC-цепочек

f г Генератор гармонических колебаний на операционных усилителях 3

Малогабаритные резисторы и конденсаторы могут иметь большие номинальные значения параметров, поэтому RC-генераторы предпочтительны в низкочастотной части диапазона. Верхний частотный предел RC-генераторов ограничивается значениями паразитных емкостей и минимальными сопротивлениями R, при которых допустимые силы токов усилителей еще обеспечивают напряжение требуемой амплитуды. Практически такие генераторы используются для генерирования колебаний, частоты которых достигают сотен килогерц.

Учитывая все выше написанное и то, что необходимо выполнить генератор гармонических колебаний с частотой f г = 8 кГц. в качестве частотно избирательной цепочки ПОС выбираю RC-цепь, а усилительным элементом по заданию является операционный усилитель (ОУ).

7 стр., 3364 слов

Генератор звуковых частот

... признаку различают следующие основные типы усилителей: усилители низкой частоты (УНЧ), широкополосные усилители, избирательные усилители. Генераторы гармонических колебаний — устройства, предназначенные для ... Свип-генератор (от англ. sweep — размах, непрестанное движение), генератор качающейся частоты, генератор измерительный, на выходе которого частота электрических колебаний автоматически ...

§3. Выбор RC-цепочки

RC-цепочка может быть подключена как к инвертирующему, так и к неинвертирующему входу ОУ. При подключении RC-цепочки к инвертирующему входу ОУ она должна вносить фазовый сдвиг, равный . Пример такого генератора показан на рис. 2. Недостаток RC-генератора на инвертирующем усилителе – большое число (не менее 6) элементов в цепи отрицательной обратной связи (ООС), поэтому чаще применяются RC-генераторы с неинвертирующим усилителем. Т.е. RC-цепочка подключается к неинвертирующему входу ОУ.

На низких и средних частотах хорошим источником синусоидальных колебаний с малым уровнем искажений служит генератор с мостом Вина (рис. 2).

Идея его состоит в том, чтобы создать усилитель с обратной связью, имеющий сдвиг фазы 0° на нужной частоте, а затем отрегулировать петлевое усиление таким образом, чтобы возникли автоколебания. Для гарантированного возбуждения автогенератора при любых колебаниях параметров усилителя и цепи ПОС петлевое усиление должно быть несколько большим, чем единица. После возникновения автоколебаний их амплитуда стабилизируется, в конечном счете, на таком уровне, при котором за счет нелинейного элемента в петле коэффициент усиления снижается до единицы. Упомянутая нелинейность проявляется в амплитудной характеристике ОУ.

Генератор гармонических колебаний на операционных усилителях 4

Рис. 2

Коэффициент передачи моста Вина

g=Z2/(Z1+Z2) где Z1=R1+1/(j×w×C1), Z2=R2/(1+j×w×C2×R2)

Если R1=R2=R и C1=C2=C то

g=1/(3+j(w×C×R-1/( w×C×R)))

Коэффициент будет вещественным на частоте w0, определяемой из уравнения

w0×C×R-1/(w0×C×R)=0

откуда частота автоколебаний

w0=1/(R×C)

Так как на этой частоте g = 1/3, то для выполнения условия Кg = 1 усилитель при замкнутой цепи ООС должен иметь коэффициент усиления немного больше трех. При меньшем усилении колебания затухают.

Генератор гармонических колебаний на операционных усилителях 5

Рис. 3

Рассмотрим схему, изображенную на рис. 3. В этой схеме усилительный элемент (ОУ) охвачен положительной и отрицательной ОС.

ОУ в совокупности с ООС, которая представляет собой делитель, составленный из резисторов R3 и R4, является неинвертирующим усилителем. Коэффициент усиления усилителя, при котором возбуждаются колебания, должен быть не меньше трех. Аналитическое выражение для рассчета коэффициента усиления имеет следующий вид: Ku = R3/R4 + 1. Таким образом, для устойчивой генерации, сопротивление резистора R3 должно быть больше сопротивления R4 как минимум в два раза.

ПОС является уже рассмотренный мост Вина (R1, R2, C1, C2).

После возбуждения, за счет нелинейности амплитудной характеристики ОУ коэффициент усиления усилителя будет равен трем, а петлевое усиление единице, что обеспечит генерацию сигнала заданной частота с амплитудой, которая будет равна выходному напряжению в режиме насыщения ОУ.

9 стр., 4181 слов

Усилитель мощности

... R11: 17. Определим сопротивление цепи ОС R12: 18. Коэффициент усиления усилителя с ОС: 19. Определим входные параметры каскада: 20. Найдём напряжение на базовых делителях: 21. Определим мощности резисторов: 22. Определим ...

Рассчитаем элементы схемы:

f г = 8кГц тогда RC = 1/(2*Pi*f) Генератор гармонических колебаний на операционных усилителях 6, где R=R1=R2, а C=C1=C2.

R выбираем так, чтобы не перегрузить ОУ по входному току, а ОУ, в свою очередь, должен обладать большим входным и малым выходным сопротивлениями, а также достаточно большим значением входного тока. В качестве операционного усилителя выбираю К153УД1Б.

Его электрические параметры:

  • Коэффициент усиления: К > 10000

Входной ток: Iвх < 2000 нА

Сопротивление нагрузки: Rн > 2 кОм

Входное сопротивление: Rвх > 0,2 мОм

Выходное сопротивление: Rвых < 200 Ом

Выходное напряжение: Uвых 9 В

Задаемся сопротивлением R:

R = 47 кОм, тогда С = 1/(2*Pi*8000*47000) = Генератор гармонических колебаний на операционных усилителях 7 пФ.

Таким образом:

R1 = R2 = 47 кОм

С1 = C2 = 430 пФ

Сопротивления R3 и R4 выбираем таким образом, чтобы

R3/R4 > 2 и R3+R4 >> Rвых ОУ

тогда получим:

R3 = 150 кОм,

R4 = 70 кОм

Схема (рис. 3.) с рассчитанными выше номинальными параметрами элементов, будет генерировать синусоидальные колебания с частотой 8 кГц и выходным напряжением порядка 9 В.

Для согласования с нагрузкой Rн = 75Ом на выходе необходимо поставить эмиттерный повторитель, который должен удовлетворять следующим требованиям: обладать входным сопротивлением намного большим выходного сопротивления генератора, и малым, намного меньшим сопротивления нагрузки, выходным сопротивлением.

Генератор гармонических колебаний на операционных усилителях 8

Рис. 4

Выходное сопротивление генератора – это сопротивление неинвертирующего усилителя (ОУ, R3, R4, где R3 и R4 — ООС), которое приближенно находится по формуле:

Генератор гармонических колебаний на операционных усилителях 9 ,

Рис. 5

Генератор гармонических колебаний на операционных усилителях 10

Рис. 6

Где Rвых – выходное сопротивление ОУ,

Кu – коэффициент усиления усилителя,

g — глубина ООС.

Генератор гармонических колебаний на операционных усилителях 11 = 200 Ом.

В качестве повторителя, который соответствует всем перечисленным требованиям, подходит ОУ К153УД1Б включенный по схеме рис. 4.

Коэффициент передачи повторителя К = 1.

Входное сопротивление

Генератор гармонических колебаний на операционных усилителях 12 ,

Где К – коэффициент усиления ОУ,

Rвх – входное сопротивление ОУ,

Rсф – входное сопротивление ОУ по синфазному сигналу, измеренное на входе (+) относительно земли или общей точки. На низких частотах это сопротивление составляет примерно 100 МОм.

7 стр., 3011 слов

Генераторы электрических колебаний

... выходное сопротивление где — выходное сопротивление усилителя без обратной связи, его коэффициент усиления на частоте щ 0 , коэффициент передачи цепи обратной связи на ... генераторе гармонических колебаний. При этом будем предполагать, что усилитель работает в линейном режиме, а генератор ... Рис. 3. Структурная схема генератора. Сразу же после включения питания на входе усилителя появляется некоторое ...

Генератор гармонических колебаний на операционных усилителях 13 вх.п.=Генератор гармонических колебаний на операционных усилителях 14Ом = 100 МОм.

Выходное сопротивление

Генератор гармонических колебаний на операционных усилителях 15 ,

Где Rвых – выходное сопротивление ОУ.

Генератор гармонических колебаний на операционных усилителях 16 Ом.

Таким образом:

Генератор гармонических колебаний на операционных усилителях 17 вх.п. = 100 МОм >> Генератор гармонических колебаний на операционных усилителях 18= 200 Ом, и Генератор гармонических колебаний на операционных усилителях 19= 0.02 Ом << Rн = 75 Ом,

эмиттерный повторитель на ОУ К153УД1Б полностью соответствует предъявляемым ему требованиям, а окончательная схема генератора приведена на рис. 5.

Разделительные емкости С3, С4 выбираются таким образом, чтобы их коэффициенты передачи Кп.р. были не меньше Генератор гармонических колебаний на операционных усилителях 20 . Это означает, что на каждом из разделительных конденсаторов должно выделяться не больше чем Генератор гармонических колебаний на операционных усилителях 21полезной мощности, поступившей от источника.

Кп.р.=Генератор гармонических колебаний на операционных усилителях 22 ,

Где f г – частота генерируемых колебаний,

Ср – емкость разделительного конденсатора. В нашем случае – это С3 и С4,

R – полезное сопротивление, на котором должна выделяться основная часть поступившего напряжения. В нашем случае R — этоГенератор гармонических колебаний на операционных усилителях 23 вх.п. и Rн.

Приняв Кп.р. = 0.99, определим значение емкостей:

C3 = Генератор гармонических колебаний на операционных усилителях 24 = 0,04 пФ,

С4 = Генератор гармонических колебаний на операционных усилителях 25 = 5,4 нФ.

Итак, окончательные значения элементов схемы (рис. 5.):

DA1, DA2 – операционные усилители серии К153УД1Б,

16 стр., 7978 слов

Оптические квантовые генераторы (2)

... (( - коэффициент усиления активной среды; (0 - постоянная затухания, учитывающая потери энергии в рабочем веществе в результате рассеяния на неоднородностях и дефектах. I. Резонаторы оптических квантовых генераторов Резонансные системы ... в активную среду. Дяя возникновения колебаний мощность в ОКГ, получаемая от активной среды, должна быть равна мощности потерь в резонаторе иди превышать ее. ...

R1 = R2 = 47 кОм,

R3 = 150 кОм,

R4 = 70 кОм,

С1 = C2 = 430 пФ,

C3 = 0,04 пФ,

С4 = 5,4 нФ.

Для питания ОУ требуется два источника питания: положительное +Uп и отрицательное –Uп относительно земли. Обычно на схемах условно источник питания не показывают.

Для ОУ К153УД1Б напряжение питания равно Генератор гармонических колебаний на операционных усилителях 26 В.

Генератор гармонических колебаний на операционных усилителях 27

Рис.6. Зависимость минимального значения коэффициента усиления и максимальных выходных напряжений ОУ К153УД1Б от напряжений источника питания.

Ряд параметров ОУ зависит от стабильности источников питания. Поэтому последние должны быть хорошо отфильтрованы и стабилизированы. Допускается разброс значений напряжения питания в пределах Генератор гармонических колебаний на операционных усилителях 28 % и пульсации не более 5 мВ эффективного значения. Допускается использование ОУ в диапазоне питающих напряжений от Генератор гармонических колебаний на операционных усилителях 29 до Генератор гармонических колебаний на операционных усилителях 30В. Однако, это влияет на коэффициент усиления и максимальное выходное напряжение (рис. 6.), что в свою очередь приводит к некоторому изменению и соответствующему перерасчету параметров генератора.

Для предотвращения паразитной генерации по цепям питания около каждого ОУ рекомендуется заблокировать цепи питания +Uп и –Uп конденсаторами емкостью 0,01 – 0,05 мкФ.

§6. Заключение

В заключении хочется отметить, что схема выполненного генератора в некоторой степени идеализирована. Я абстрагировался от некоторых физиологических свойств ОУ. Таких, как искажение сигнала при насыщении усилителя.

На практике форма автоколебаний такого генератора может отличаться от синусоиды. Это объясняется тем, что необходимый для устойчивой генерации петлевой коэффициент усиления Кg достигается за счет нелинейности амплитудной характеристики ОУ, для чего ОУ входит в режим насыщения, и генерируемые колебания могут искажаться.

Для получения гармонических колебаний с малыми искажения, обратная отрицательная связь ОУ (делитель, состоящий из резисторов R3 и R4) должна быть инерционно-нелинейной цепью. Такие инерционно-нелинейные цепи на практике называются цепями автоматической регулировки усиления (АРУ).

Принципиально расчет такого генератора не отличается от расчета, выполненного в данном проекте, за исключением дополнительной сложности в расчете цепей АРУ.

§7. Список литературы

[Электронный ресурс]//URL: https://inzhpro.ru/referat/na-temu-generatoryi-garmonicheskih-kolebaniy/

1. Гутников В.С. Применение операционных усилителей в измерительной технике. Л., “Энергия”, 1975.

10 стр., 4745 слов

Бензиновые и дизельные генераторы

... и долговечность. Необходимостью применения дизель-генераторов является резервирование мощностей для работы при ... эксплуатации. 2. Дизельная электростанция или дизельгенератор . Автономные дизельные электростанции являются ... спасательных работ, автономный источник питания просто жизненно необходим. Отличительными ... строительстве, аэропортах, гостиницах; узлах связи, системах жизнеобеспечения и т. ...

2. Гутников В.С. Интегральная электроника в измерительных устройствах. – Л.: Энергия. Ленингр. отд-ние, 1980. – 248 с., ил.

3. Гутников В.С. Интегральная электроника в измерительных устройствах. – 2-е изд., переб. И доп. – Л.: Энергоатомиздат. Ленингр. отд-ние, 1988. – 304 с., ил.

4. Проектирование и применение операционных усилителей / Под ред. Дж. Грэма, Дж. Тоби, Л. Хьюлсмана. – М.: Мир,1974. – 510 с.

5. Алексеенко А.Г., Коломбет Е.А., Стародуб Г.И. Применение прецизионных аналоговых микросхем. 2-е изд., перераб. И доп. – М.; Радио и связь, 1985, — 256 с., ил.

6. Вениаминов В.Н., Лебедь О.Н., Мирошниченко А.И. Микросхемы и их применение: Справ. пособие. – 3-е изд., перераб. И доп. – М.; Радио и связь, 1989. 240 с., ил. – (Массовая радио библиотека; Вып. 1143).

7. Кауфман М., Сидман А.Г. Практическое руководство по расчетам схем в электронике: Справочник. В 2-х т. Т. 1: Пер с англ./ Под ред. Ф.Н. Покровского. – М.: Энергоатомиздат, 1991. – 368 с.:ил.

Электронный генератор тока

Разработать лабораторный стенд для испытания устройств защиты судовых генераторов

Теория

Электрические аппараты

Измеритель коэффициента шума

Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств

Приемник цифровой системы передачи информации ВЧ-каналом связи по ВЛ

Усилитель мощности миллиметрового диапазона длин волн

Усилитель мощности на дискретных элементах

Электронные схемы для дома и быта

Характеристика усилителя низкой частоты

Измеритель отношения сигнал/шум ТВ канала

Оптоволоконные линии связи

Лекции — преподаватель Григорьев Владимир Калистратович

Кинематика и динамика поступательного движения

Анализ и моделирование биполярных транзисторов

Передающее устройство одноволоконной оптической сети