Магнитно-Порошковая Дефектоскопия

Реферат

Магнитно-Порошковая Дефектоскопия

Магнитно-Порошковая Дефектоскопия

Метод магнитной порошковой дефектоскопии, называемый также методом магнитной суспензии, основан на выявлении нарушения целости металла по скоплению магнитного порошка около дефекта. В этих местах образуются потоки рассеяния и возникают магнитные полюса, притягивающие частички порошка. При небольшой намагниченности выявляются открытые трещины и надрывы, при намагниченности 300—500 Гс * — поверхностные плены и более глубокие волосовины. По мере увеличения намагниченности обнаруживаются более мелкие волосовины, а при намагниченности около 1000 Гс выявляются и неглубокие риски на поверхности. При намагниченности около 1500 Гс обнаруживаются волосовины и другие дефекты, не доходящие до поверхности на 1—3 мм.

Методом магнитной дефектоскопии выявляют трещины в заклепочных и сварных швах, вальцовочных соединениях, трубных решетках и днищах барабанов котлов.

Магнитную суспензию приготовляют путем смешения магнитного порошка и олеинового мыла с водой. Магнитный порошок получают из сухого мелкоразмолотого немагнитного железного сурика (Fe2O3), смешивая его с керосином до тестообразного состояния и прокаливая в металлическом или глиняном тигле с негерметической крышкой на кузнечном горне или в газоходе котла при 650—800° С. Полученный черный порошок магнитной окиси железа (Fe3O4) во избежание повторного окисления охлаждают и хранят без доступа свежего воздуха. Красный или желтый цвет порошка свидетельствует о недостаточном его раскислении. Такой порошок плохо притягивается магнитом; его снова смешивают с керосином и прокаливают вторично. Если нет сухого железного сурика, можно использовать тертый масляный сурик, прокалив его в тигле без добавления керосина. Получающийся порошок загрязнен маслянистой сажей, но вполне пригоден для приготовления магнитной суспензии.При приготовлении магнитной суспензии на 1 л суспензии берут 15—12 г олеинового мыла и 50—60 г магнитного порошка. Мыло растворяют в небольшом количестве горячей воды, затем добавляют магнитный порошок и тщательно все перемешивают. После этого суспензию разбавляют горячей водой до нужной консистенции. Олеиновое мыло позволяет получить однородную и устойчивую смесь порошка и воды. Иногда применяют хозяйственное мыло хорошего качества, в этом случае смесь получается менее однородной.

Для намагничивания контролируемых участков барабанов используют обычно переменный ток 1400—1700 А напряжением 3—6 В, получаемый от сварочного или испытательного трансформатора. Поверх существующей вторичной (разомкнутой) обмотки сварочного трансформатора накладывают 3—5 витков гибкого кабеля или изолированной шинной красной меди сечением 100—240 мм2, которые образуют вторичную обмотку. К клеммам этой обмотки присоединяют гибкий изолированный кабель такого же сечения для намагничивания элементов барабана.

8 стр., 3568 слов

«Техническая диагностика. Магнитный контроль. Реализация при ...

... ]. Магнитная дефектометрия измерение геометрических размеров дефектов и определение их местоположения в объекте контроля методами магнитного неразрушающего контроля [2]. Магнитопорошковый метод метод МНК, основанный на использовании в качестве индикатора магнитного порошка [2 ...

Первичную обмотку трансформатора присоединяют к сети через предохранители и двухполюсный рубильник закрытого типа. Второй рубильник устанавливают вблизи трансформатора. Монтер, обслуживающий этот рубильник, должен находиться в поле зрения рабочего, стоящего у лаза барабана, или сам должен стоять у лаза.

Сопротивление вторичной цепи должно быть минимальным. Трансформатор устанавливают возможно ближе к барабану. Длина цепи должна быть не больше 10—15 м, а число контактов — не более 4. Мощность трансформатора должна быть 8— 10 кВА. Допускается и меньшая мощность, так как при очень коротких промежутках времени включения перегрузка неопасна. Предохранители в этом случае ставят на ток, составляющий 40— 50% полного рабочего тока. Это предохраняет трансформатор от перегрузки при нахождении его по каким-либо причинам под рабочим током длительное время. Цыр кулярное намагничивание является основным при магнитной дефектоскопии, продольное же намагничивание применяется только в тех случаях, когда в контролируемой детали предполагаются строго поперечные дефекты или применение циркулярного намагничивания затруднено или сопряжено с порчей детали (напр., из-за опасного перегрева детали в местах контактов с электродами дефектоскопа).

Чувствительность магнитно-порошкового метода существенно зависит от степени намагниченности детали во время обработки магнитной суспензией (или порошком).

В большинстве случаев для проведения магнитного контроля достаточна остаточная намагниченность материала контролируемых деталей после их намагничивания в тех или иных магнитных полях. Однако при контроле деталей из материалов с малой коэрцитивной силой (малоуглеродистая сталь или сталь в отожженном состоянии) остаточная намагниченность может быть недостаточной даже если намагничивание производилось в магнитных полях, близких к насыщению. В этих случаях обработка деталей суспензией или порошком должна производиться во время действия на деталь магнитного поля, требующегося для создания необходимой намагниченности материала. Такой вид контроля, в отличие от контроля на остаточной намагниченности, наз. контролем в приложенном магнитном поле. Выявляемость дефектов зависит также и от их гео- метрич. параметров. Лучше выявляются дефекты, имеющие большую высоту, большее отношение высоты к ширице и находящиеся на меньшей глубине. Режимы намагничивания выбираются с таким расчетом, чтобы в каждом конкретном случае хорошо обнаруживались дефекты материала, представляющие опасность для работы детали и не обнаруживались бы неопасные для данной детали дефекты. Так, для контроля высоконагруженных деталей, прошедших чистовую обработку поверхности, на поверхности создают намагничивающее поле —100 э — при контроле на остаточном намагничивании и — 30 э — при контроле в приложенном поле.

4 стр., 1734 слов

Неразрушающий контроль

... неразрушающего контроля Магнитные методы неразрушающего контроля решают следующие задачи: феррозондовый метод контроля применяется для выявления поверхностных и под поверхностных (глубиной до 10 мм) дефектов ... многом зависит чувствительность и возможность обнаружения дефектов. 3. Нанесение на поверхность детали магнитного индикатора (порошка или суспензии). Оптимальный способ нанесения суспензии ...

При этом обнаруживаются выходящие на поверхность дефекты высотой более 0,05 мм и примерно половина дефектов такой же высоты, находящихся па глубине до 0,5 мм. Для обнаружения более мелких дефектов (волосовин, шлифовочных трещин и др.) применяется т.п. режим «повышенной жесткости», при к-ром создают магнитные поля на поверхности детали соответственно —180 и —60 э. При контроле на режиме «пониженной жесткости» используется обычно остаточная намагниченность после намагничивания в поле на поверхности детали —60 э\ при этом выявляются выходящие на поверхность трещины, вытянутые в глубь металла волосовины и часть более мелких поверхностных и подповерхностных дефектов. О характере дефекта судят по оседанию магнитного порошка. Так, закалочные, ковочные и др. трещины вызывают плотное оседание порошка в виде резких ломаных линий. Флокены выявляются в виде отдельных искривленных черточек, расположенных поодиночке или группами, слой осевшего порошка в этом случае также довольно плотен. Волосовины обнаруживаются по оседанию порошка в виде прямых или слегка изогнутых (по волокну) тонких черточек, интенсивность оседания порошка в этом случае меньшая, чем при трещинах поперечных разрезов этих дефектов.

Для улучшения видимости порошка его окрашивают в контрастные цвета по отношению к цвету контролируемых деталей. Наряду с обычными порошками красно- коричневого и темно-серого цветов, используемых при контроле деталей со светлой поверхностью, применяются порошки светло-серого, желтого или зеленого цветов для контроля деталей с темной поверхностью. Значительно ярче вырисовываются дефекты при использовании магнитных порошков, частицы к-рых покрыты слоем люминофора (см. Магнитно-люминесцентная дефектоскопия).

Магнитно-порошковый метод М. д. применяется не только в процессе производства изделий, но и при их эксплуатации, напр.

для обнаружения трещин усталостного происхождения. Переносные дефектоскопы позволяют применять магнитно-порошковый метод для контроля деталей, узлов и агрегатов без их разборки.

Весьма перспективным методом магнитной дефектоскопии является метод, основанный на использовании феррозондовых индикаторов полей рассеяния (см. Феррозондовыи метод дефектоскопии).

При контроле качества сварки трубопроводов широко используется магнитографический метод дефектоскопии.

Методы магнитной дефектоскопии, используемые для контроля качества термич. обработки, а иногда и для сортировки металла по маркам, основываются на связи между какой-либо магнитной хар-кой и структурномеханич. свойствами или химич. составом материала контролируемых деталей; эта группа методов известна под названием с т р у к- туроскопических. Чаще всего в магнитной структуроскопии используются следующие магнитные хар-ки: коэрцитивная сила (#с), остаточная индукция (£г), намагниченность насыщения (/макс), макс, магнитная проницаемость (р,макс).

В соответствии с этим магнитно-структуроскопические методы разделяются на ферро- метрические (измерение /макс), пермеаметрические (измерение |Имакс), коэрцитиметрические (измерение #с), реманенцескопические (измерение Вг).

8 стр., 3603 слов

Метод магнитно-резонансной томографии

... Нобелевская премия по физиологии и медицине за изобретение исследования в области МРТ. 2. Физические основы МРТ МРТ (магнитно-резонансная томография) - метод получения послойного изображения органов и ... сотрудничеству с Корнелиусом Якобом Гортера в 1938 опубликовал статью «Новый метод измерения ядерного магнитного момента». В 1942 г. вышла статья Гортера, в которой ученый за авторством Раби ...

Важное преимущество широко распространенных коэрцитиметрич. методов заключается в том, что точность измерения коэрцитивной силы практически не зависит от формы и размеров контролируемых деталей. В коэрцитиметрич. приборах (ко- эрцитиметрах) контролируемая деталь намагничивается до технич. насыщения, после чего подвергается действию постепенно увеличивающегося магнитного поля обратного направления; при этом определяется величина магнитного поля (или тока, питающего размагничивающее устройство), при к-ром намагниченность детали становится равной нулю. В реманенцескопич. приборах оценивается обычно величина кажущейся остаточной индукции. Это осуществляется либо баллистическим способом — быстрым продвижением детали сквозь катушку, соединенную с измерительным прибором, либо магнитометрическим — измерением напряженности магнитного поля, создаваемого контролируемой деталью, на определенном расстоянии от этой детали. Большое распространение получили весьма простые пермеаметрич. приборы, в к-рых датчиком является система из первичной и вторичной катушек, располагаемых либо на контролируемой детали, либо на П-образном сердечнике, концы к-рого замкнуты деталью. По первичной катушке обычно пропускается ток промышленной частоты, а в цепь вторичной катушки включается измерительный прибор. Для повышения разрешающей способности пермеаметрич. метода применяются различные компенсационные схемы, позволяющие использовать измерительную аппаратуру более высокой чувствительности.

Феррометрич. методы магнитной структуроскопии, применяемые для определения количества ферромагнитной фазы в стали, основываются на измерении намагниченности насыщения; точность измерения тем больше, чем ближе намагниченность деталей в процессе контроля к магнитному насыщению. Только при полном насыщении имеется однозначная зависимость между интенсивностью намагниченности и количеством ферромагнитной фазы. На интенсивность намагниченности материала в меньших магнитных полях оказывают влияние также и др. мешающие факторы (напр., форма частиц и характер распределения ферромагнитной фазы).

На практике обычно применяется контроль в более слабых полях; в ряде случаев для целей ферро- метрии применяются и довольно простые пермеаметрич. приборы.

Одной из важных областей магнитной дефектоскопии является измерение толщины покрытий магнитными методами. Эти методы применяются в тех случаях, когда материалы основы и покрытия резко отличаются по своим магнитным свойствам. Они используются, напр., для измерения немагнитных металлич. и неметаллич., а также слабомагнитных (никелевых) покрытий на стальных деталях. Распространены две группы магнитных толщиномеров. Приборы первой группы основаны на измерении силы притяжения постоянного магнита или сердечника электромагнита к контролируемой детали. Эта сила уменьшается с увеличением толщины слоя немагнитного (или слабомагнитного) покрытия. Сила притяжения обычно определяется по силе, необходимой для отрыва магнита (или сердечника электромагнита) от контролируемой детали, поэтому приборы, входящие в эту группу, называются «отрывными». Приборами второй группы определяется сопротивление магнитной цепи, составленной из контролируемого участка детали и сердечника электромагнита (или постоянного магнита).

Величина этого сопротивления зависит от толщины покрытия; чем толще покрытие, представляющее собой немагнитный или слабомагнитный зазор между сердечником датчика и контролируемой деталью, тем больше сопротивление цепи.

21 стр., 10146 слов

Методы и средства неразрушающего контроля

... с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т. д. ), то часть силовых линий магнитного поля выходит из детали наружу и входит в ...

Одним из приборов «отрывного» типа является магнитный толщиномер МТ2-54, представляющий собой силоизмерительный механизм, определяющий величину силы притяжения постоянного магнита к контролируемой детали. Прибор позволяет производить измерения в диапазоне от 0 до 600 мк с погрешностью, не превышающей 5% от измеряемой толщины. Действие другого магнитного толщиномера МТ-ДАЗ основано на измерении силы притяжения подвижного сердечника электромагнита к контролируемой детали. Толщина покрытия определяется по показанию гальванометра, включенного в цепь соленоида в момент отрыва сердечника; шкала гальванометра градуирована в микронах. Если в результате действия мешающих факторов показание прибора на детали без покрытия не равно нулю, то необходимо пользоваться переводным графиком с подвижной линейкой, аналогичным графику прибора МТ2-54. Магнитные методы успешно применяются для измерения толщины стенок деталей из ферромагнитных материалов. Особенно эффективны эти методы при одностороннем доступе к изделию. Применяемые в этих случаях методы прямо или косвенно связаны с измерением магнитного потока в контролируемом участке детали при намагничивании ее до технического насыщения.

В приборе Ферстера (ФРГ) датчиком является постоянный подковообразный магнит с измерительной обмоткой в средней части. При соприкосновении датчика с контролируемой деталью в результате уменьшения размагничивающего поля интенсивность намагничивания магнита увеличивается и в цепи обмотки возникает импульс тока, величина к-рого пропорциональна толщине стенки детали. В качестве измерительного прибора в этом случае использован флюксметр. Диапазон толщин, измеряемых указанным прибором, от 0 до 3 мм. В нек-рых магнитных толщиномерах датчиком является подковообразный электромагнит, питаемый переменным током промышленной частоты. Показания гальванометра, включенного в цепь вторичной (измерительной) обмотки датчика, зависят от толщины стенки контролируемой детали. В связи с сильным влиянием скин-эффекта приборы подобного типа используются при контроле стенок толщиной не более 1—1,5 мм. Для увеличения диапазона измеряемых толщин либо уменьшают частоту питающего тока (что значительно усложняет прибор), либо используют дополнительное подмагничивание контролируемого участка постоянным магнитным полем.

Магнитный метод с использованием феррозондов применяется и для измерения толщины стенок деталей из неферромагнитных материалов, однако в этом случае необходим доступ к обеим сторонам этих стенок.

В результате контроля методами магнитной дефектоскопии детали из ферромагнитных материалов приобретают остаточную намагниченность, что в ряде случаев может повести к нарушению нормальной работы изделия, в к-ром будут находиться намагниченные детали. Так, напр., намагниченность деталей может вызвать повышение девиации компаса самолета или повышенный износ в узлах трения в результате притяжения железных частиц. Поэтому после магнитного контроля необходимо производить размагничивание деталей.

Размагничивание осуществляется чаще всего путем продвижения намагниченных изделий через размагничивающие камеры (соленоиды), питаемые переменным током промышленной частоты. В случаях, когда необходимо размагничивать крупные детали (особенно намагниченные постоянным магнитным полем), используется размагничивающее поле пониженной частоты. В нек-рых дефектоскопах (напр., УМДЭ- 10 000) размагничивание крупных деталей производится путем коммутации пропускаемого по детали постоянного тока с постепенным уменьшением его величины до нуля.

4 стр., 1802 слов

Магнитная дефектоскопия технических устройств. Метод магнитной памяти металла

... изделия порошок оседает в местах расположения дефектов (метод магнитного порошка). Методом магнитного порошка можно обнаружить трещины и другие-дефекты на глубине до 2 мм. Чувствительность метода магнитной дефектоскопии зависит ... данных о состоянии оборудования; осуществлять экспресс-сортировку новых и старых деталей по их предрасположенности к повреждениям; определять на объекте контроля с ...

Наиболее широко распространенным методом магнитной дефектоскопии является метод магнитного порошка. При этом методе намагниченную деталь посыпают магнитным порошком (сухой метод) или поливают магнитной суспензией (мокрый метод).

Частицы порошка, попавшие в зоны магнитных полей рассеяния, оседают на поверхности деталей вблизи мест расположения дефектов. Ширина полосы, па к-рой происходит оседание порошка, значительно больше ширины «раскрытия» дефекта, поэтому невидимые до этого дефекты фиксируют по осевшему около них порошку даже невооруженным глазом. Метод магнитного порошка весьма прост и позволяет определять места и контуры нарушений сплошности материала, расположенные на поверхности деталей, а также на глубине до 2—3 мм под поверхностью. Намагничивание деталей, обработка их порошком (чаще суспензией), а также последующее размагничивание производятся с помощью магнитных дефектоскопов. Когда в контролируемых деталях возможна различная ориентировка дефектов, необходимо проводить двойной контроль с продольным и циркулярным намагничиванием. Более производительным является магнитно-порошковый контроль с использованием комбинированного намагничивания. Циркулярное намагничивание является основным при магнитной дефектоскопии, продольное же намагничивание применяется только в тех случаях, когда в контролируемой детали предполагаются строго поперечные дефекты или применение циркулярного намагничивания затруднено или сопряжено с порчей детали (напр., из-за опасного перегрева детали в местах контактов с электродами дефектоскопа).

Чувствительность магнитно-порошкового метода существенно зависит от степени намагниченности детали во время обработки магнитной суспензией (или порошком).

В большинстве случаев для проведения магнитного контроля достаточна остаточная намагниченность материала контролируемых деталей после их намагничивания в тех или иных магнитных полях. Однако при контроле деталей из материалов с малой коэрцитивной силой (малоуглеродистая сталь или сталь в отожженном состоянии) остаточная намагниченность может быть недостаточной даже если намагничивание производилось в магнитных полях, близких к насыщению. В этих случаях обработка деталей суспензией или порошком должна производиться во время действия на деталь магнитного поля, требующегося для создания необходимой намагниченности материала. Такой вид контроля, в отличие от контроля на остаточной намагниченности, наз. контролем в приложенном магнитном поле. Выявляемость дефектов зависит также и от их гео- метрич. параметров. Лучше выявляются дефекты, имеющие большую высоту, большее отношение высоты к ширице и находящиеся на меньшей глубине. Режимы намагничивания выбираются с таким расчетом, чтобы в каждом конкретном случае хорошо обнаруживались дефекты материала, представляющие опасность для работы детали и не обнаруживались бы неопасные для данной детали дефекты. Так, для контроля высоконагруженных деталей, прошедших чистовую обработку поверхности, на поверхности создают намагничивающее поле —100 э — при контроле на остаточном намагничивании и — 30 э — при контроле в приложенном поле. При этом обнаруживаются выходящие на поверхность дефекты высотой более 0,05 мм и примерно половина дефектов такой же высоты, находящихся па глубине до 0,5 мм. Для обнаружения более мелких дефектов (волосовин, шлифовочных трещин и др.) применяется т.п. режим «повышенной жесткости», при к-ром создают магнитные поля на поверхности детали соответственно —180 и —60 э. При контроле на режиме «пониженной жесткости» используется обычно остаточная намагниченность после намагничивания в поле на поверхности детали —60 э\ при этом выявляются выходящие на поверхность трещины, вытянутые в глубь металла волосовины и часть более мелких поверхностных и подповерхностных дефектов. О характере дефекта судят по оседанию магнитного порошка. Так, закалочные, ковочные и др. трещины вызывают плотное оседание порошка в виде резких ломаных линий. Флокены выявляются в виде отдельных искривленных черточек, расположенных поодиночке или группами, слой осевшего порошка в этом случае также довольно плотен. Волосовины обнаруживаются по оседанию порошка в виде прямых или слегка изогнутых (по волокну) тонких черточек, интенсивность оседания порошка в этом случае меньшая, чем при трещинах поперечных разрезов этих дефектов.

3 стр., 1148 слов

Методы ремонта детали

... используют следующие методы: магнитная диагностика, основанная на свойстве ферромагнитного порошка располагаться по магнитным силовым линиям; ... в углекислом газе; сваркой восстанавливают станины и корпусные детали; наплавка - металлизация - электрохимическое покрытие - ... подвергаться переосвидетельствованию и текущему ремонту. 4. ПОДГОТОВКА ОБОРУДОВАНИЯ К РЕМОНТУ Первичная подготовка а)аппарат ...

Для улучшения видимости порошка его окрашивают в контрастные цвета по отношению к цвету контролируемых деталей. Наряду с обычными порошками красно- коричневого и темно-серого цветов, используемых при контроле деталей со светлой поверхностью, применяются порошки светло-серого, желтого или зеленого цветов для контроля деталей с темной поверхностью. Значительно ярче вырисовываются дефекты при использовании магнитных порошков, частицы к-рых покрыты слоем люминофора (см. Магнитно-люминесцентная дефектоскопия).

Магнитно-порошковый метод М. д. применяется не только в процессе производства изделий, но и при их эксплуатации, напр.

для обнаружения трещин усталостного происхождения. Переносные дефектоскопы позволяют применять магнитно-порошковый метод для контроля деталей, узлов и агрегатов без их разборки.

Весьма перспективным методом магнитной дефектоскопии является метод, основанный на использовании феррозондовых индикаторов полей рассеяния (см. Феррозондовыи метод дефектоскопии).

При контроле качества сварки трубопроводов широко используется магнитографический метод дефектоскопии.

Методы магнитной дефектоскопии, используемые для контроля качества термич. обработки, а иногда и для сортировки металла по маркам, основываются на связи между какой-либо магнитной хар-кой и структурномеханич. свойствами или химич. составом материала контролируемых деталей; эта группа методов известна под названием с т р у к- туроскопических. Чаще всего в магнитной структуроскопии используются следующие магнитные хар-ки: коэрцитивная сила (#с), остаточная индукция (£г), намагниченность насыщения (/макс), макс, магнитная проницаемость (р,макс).

В соответствии с этим магнитно-структуроскопические методы разделяются на ферро- метрические (измерение /макс), пермеаметрические (измерение |Имакс), коэрцитиметрические (измерение #с), реманенцескопические (измерение Вг).

Важное преимущество широко распространенных коэрцитиметрич. методов заключается в том, что точность измерения коэрцитивной силы практически не зависит от формы и размеров контролируемых деталей. В коэрцитиметрич. приборах (ко- эрцитиметрах) контролируемая деталь намагничивается до технич. насыщения, после чего подвергается действию постепенно увеличивающегося магнитного поля обратного направления; при этом определяется величина магнитного поля (или тока, питающего размагничивающее устройство), при к-ром намагниченность детали становится равной нулю. В реманенцескопич. приборах оценивается обычно величина кажущейся остаточной индукции. Это осуществляется либо баллистическим способом — быстрым продвижением детали сквозь катушку, соединенную с измерительным прибором, либо магнитометрическим — измерением напряженности магнитного поля, создаваемого контролируемой деталью, на определенном расстоянии от этой детали. Большое распространение получили весьма простые пермеаметрич. приборы, в к-рых датчиком является система из первичной и вторичной катушек, располагаемых либо на контролируемой детали, либо на П-образном сердечнике, концы к-рого замкнуты деталью. По первичной катушке обычно пропускается ток промышленной частоты, а в цепь вторичной катушки включается измерительный прибор. Для повышения разрешающей способности пермеаметрич. метода применяются различные компенсационные схемы, позволяющие использовать измерительную аппаратуру более высокой чувствительности.

5 стр., 2401 слов

«Магнитное поле» Физика 10 класс

... Подобно тому, как электрические поля графически изображаются с помощью электрических силовых линий, магнитные поля изображаются с помощью линий магнитной индукции (или магнитных силовых линий). Линии магнитной индукции – это ... описать, задавая в каждой точке поля некоторый вектор В. Вектор В называется магнитной индукцией и является основной характеристикой магнитного поля. 2.Сила Ампера F = I· ...