Процесс электропроводности металлов возможно рассмотреть с квантовой точки зрения. Известно, что при объединении атомов в определенную кристаллическую решетку наблюдается постепенное снижение высоты всех стенок основного барьера, расположенного вокруг ядра каждого атома. При этом динамично движущиеся валентные электроны начинают перемещаться по всему кристаллу, а элементы внутренних оболочек не покидают своих позиций и остаются на своих местах.
Рисунок 1. Электропроводимость металлов. Автор24 — интернет-биржа студенческих работ
Готовые работы на аналогичную тему
Такое предположение отодвинуло закон Больцмана на последнее место, так как его теория была абсолютно не применима к электронам проводимости металла. На самом деле, указанный закон гласит, что общее количество частиц газа, которые находятся в состоянии равновесия, определяется формулой, не имеющей никаких ограничений на число электронов. Все элементы этой системы должны иметь нулевую энергию.
Согласно научной работе Паули, каждый подуровень в электропроводности металлов может содержать только два электрона. Таким образом, надо отказаться от учений Больцмана и найти для электронов проводимости иной статистический закон.
Сверхпроводимость металлов в квантовой физике
В сфере действия низких температур возникает процесс сверхпроводимости в виде резкого падения общего сопротивления материала. Впервые данное явление было обнаружено в начале 1911 года Камерлингом-Оннесом для определения значения ртути при температуре 4.2 К.
Экспериментально сверхпроводимость металлов осуществляется двумя способами:
- включив в металлическую цепь звено из сверхпроводника, где в момент перехода в сверхпроводящее условие отличие потенциалов на концах каждого участка будет равна нулю;
- разместив кольцо из сверхпроводника в параллельное к нему электромагнитное поле и охладив элемент ниже температуры перемещения в сверхпроводящее состояние, выключают поле.
В итоге в кольце начинает постепенно индуцироваться незатухающий электрический ток, циркуляция которого может длиться бесконечно долго. Такой научный эксперимент подтвердил, что кольцо необходимо поддерживать при определенной температуре, в результате чего ток в нем будет наблюдаться как минимум в течение двух лет.
Сверхпроводимость
... сверхпроводимость уступает место обычной проводимости. Сверхпроводимость наблюдается как у элементов, так и у сплавов и металлических соединений. Сверхпроводимость ... температуры, конечная картина заметно изменится. Для большинства металлов ( кроме ферромагнетиков ) значение относительной магнитной ... проволоке. I I 0 0,5В c Процесс нарушения сверхпроводимости в массивных образцах при достижении ...
Теория сверхпроводимости металлов была представлена общественности и научному миру в 1957 году Купером, Бардиным и Шиффером. Проведенные на сегодняшний день экспериментальные исследования только подтверждают эту гипотезу. Основная суть ее состоит в следующем: в металле между электронами появляется особый вид напряжение, помимо интенсивности работы кулоновского отталкивания. При крайне низких температурах эта гравитация оказывается значительно сильнее самого отодвигания. В итоге все свободные электроны объединяются в куперовские пары, представляющие собой бозон.
Распределение Ферми-Дирака
При температуре абсолютного нуля в каждом из возможных состояний, энергия которых ниже силы Ферми для определенного металла, можно обнаружить один электрон; в самих процессах электронов нет. Поэтому функция группирования электронов по энергиям равняется вероятности пребывания элемента в состоянии с конкретной энергией.
Для того, чтобы обнаружить эту функцию при температуре выше абсолютного нуля, необходимо изучить неупругие соединения электрона с атомом, расположенном в стабильном узле кристаллической решетки.
Вероятность столкновения электронов, в результате которого элемент трансформируется в состояние с энергией, а атом – в положение с нулевой энергией, пропорциональна:
- возможности пребывания электрона в состоянии с теплоэнергией;
- допустимость того, что положение электрона в атоме свободно;
- вероятности того, что атом металла находится в том же энергетическом состоянии.
Обратный процесс может возникнуть, если энергия атома начнет уменьшаться, а сила электрона увеличиваться при пребывании данного элемента в состоянии с нулевой энергией. Следовательно, в металлах средняя активность теплового движения электронов равна общей энергии Ферми, которая поглощается при температурах примерно 30000 К.
Поэтому коэффициент температуры плавления электронного газа в металлах можно считать вырожденным, так как в проводимых металлах концентрация свободных электронов будет значительно меньше, чем в других материалах. Из этого получается, что уже при комнатной температуре в полупроводниках электронный газ будет невырожденным, полностью подчиняющимся закону Больцмана.
Движение электронов в кристаллической решетке
В кристаллической решетке все неподвижные частицы отсутствуют из-за нарушения периодичности, поэтому электроны ведут себя аналогично оптически однородной среде, которая не распределяет «электронные волны». Это соответствует тому, что металлические элементы не оказывают никакого сопротивления электрическому току.
В указанной среде происходит частичное рассеяние «электронных волн» на разнообразии элементов, что и является причиной стабильного электрического сопротивления металлов. Распределение электронных частиц на неоднородностях можно рассматривать как абордаж электронов с фононами.
В квантовой теории средняя скорость практически не зависит от температуры, так как с изменением этого коэффициента уровень Ферми остается неизменным. Однако с увеличением градуса рассеяние «электронных волн» на всех тепловых колебаниях решетки постепенно возрастает, что автоматически провоцирует уменьшение средней длины свободного фонона. При комнатных температурах в результате сопротивления металлов температура будет расти пропорционально. Таким образом, квантовая гипотеза электропроводности металлов смогла устранить эту трудность классической теории.
Материаловедение и технология металлов
... кристаллического строения металлов Материаловедение - это наука о взаимосвязи электронного строения, структуры материалов с их составом, физическими, химическими, технологическими и эксплуатационными свойствами. Создание научных основ металловедения ... рентгеновских лучей, используют электроны и нейтроны. Соответствующие ... что экономит дефицитные металлы, снижает затраты энергии на производство ...
Простейшая квантовая теория электропроводности металлов
В пределах квантово-механической теории перемещение электронов в металле представляет собой распространение их дебройлевских волн. При этом свет проходит исключительно через мутную среду и определяет сам процесс рассеяния, которое приводит к уменьшению интенсивности определенного пучка. Для возникновения распределения энергии необходимо, чтобы все частицы макросреды находились на расстояниях, сравнимых с длиной волны.
Длина дебройлевской волны электрона всегда участвует в токе проводимости. Расчеты ученых показывают, что общая скорость стабильного движения электронов в конкретном металлическом проводнике характеризуется величиной примерно в 0,1 мм/с. Определив количественные значения в формулу можно определить, что длина волны равняется приблизительно 7 м. другими словами, металлический проводник с наилучшей кристаллической решеткой не обладает электрическим сопротивлением.
Нарушение установленной и строгой периодичности размещения атомов напрямую связано с различного рода изъянами – вакансиями, бесконтрольными примесями других химических элементов, дислокациями и многочисленными тепловыми колебаниями атомов. Следует иметь в виду, что в классической теории электрическое внешнее поле приводит в урегулирование движение все свободные элементы металла, в то время как в квантовой гипотезе ток проводимости возникает только при действии тех электронов, энергия которых близка к уровню Ферми.