Чугун — Fe (основа) с С (обычно 2…4 %), содержащий постоянные примеси (Si, Mn, S, Р), а иногда и легирующие элементы (Cr, Ni, V. А1 и др.); как правило, хрупок.
Углерод в чугуне может находиться в виде цементита, или одновременно в виде цементита и графита. Образование стабильной фазы — графита в чугуне может происходить в результате непосредственного выделения его из жидкого (твердого) раствора или вследствие распада предварительно образовавшегося цементита (при замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению РезС —> Fe + ЗС с образованием феррита и графита).
Процесс образования в чугуне (стали) графита называют графшпизацией.
Графит повышает и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, хорошо обрабатываются резанием (с образованием ломкой стружки) и обеспечивают более чистую поверхность, чем стали (кроме автоматных сталей).
Присутствие в структуре чугунов обусловливает его использование исключительно в качестве литейного сплава. Высокие литейные свойства при небольшой стоимости обеспечили широкое применение чугунов в промышленности.
Механические свойства чугуна обусловлены, главным образом, количеством и структурными особенностями графитной составляющей. Влияние графитных на механические свойства чугуна можно оценить количественно (ГОСТ 3443—87).
Чем меньше графитных включений, чем они мельче и больше степень их изолированности, тем выше прочность чугуна при одной и той же металлической основе. Наиболее высокую прочность обеспечивает шаровидная форма графитной составляющей, а для хлопьевидной составляющей характерны высокие пластические свойства. Чугун с пластинчатым графитом можно рассматривать как сталь, в который графит играет роль надрезов, ослабляющих металлическую основу.
Применяемые для отливок чугуны имеют в среднем состав: С — 2…40o,Si—1.5…40o,Mn—0,6…1.250o,P—0,l…l,20o,S<0,060o.
Углерод определяет количество графита в чугуне: чем выше его содержание, тем больше образуется графита и тем ниже механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) должно быть не меньше 2,4 % С.
Белые Износостойкие Чугуны
... Свойства чугуна определяются свойствами металлической основы и характера включений графита. Чугуны содержат следующие структурные составляющие: графит (Г); перлит (П); феррит (Ф); ледебурит (Л); фосфидную эвтектику По микроструктуре различают: белый чугун ... в виде цементита. Излом такого чугуна имеет матово-белый цвет. Наличие большого количества цементита придает белому чугуну высокие твердости, ...
Кремний оказывает большое влияние на структуру и свойства чугунов, так как величина температурного интервала, в котором в равновесии с жидким сплавом находятся и графит, зависит от его содержания. Чем больше содержание кремния, тем шире эвтектический интервал температур. Таким образом, кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой — скорость охлаждения, можно получить различную структуру металлической основы чугуна.
Сера и марганец являются вредными технологическими примесями, содержание которых в чугунах ограничивают. Сера ухудшает механические и литейные свойства. И сера, и марганец препятствуют графитизации.
Фосфор не влияет на графитизацию, а при повышенном (до 0,4…0,5 ° о) содержании повышает износостоикость чугунов, так как образуются твердые включения фосфидной эвтектики.
Самым распространенным видом чугунов является отжиг отливок при 430…600 °С для уменьшения литейных напряжений, которые могут вызвать даже коробление фасонных изделий. Нормализация чугуна проводится для аустенизации ферритной и ферритно-перлитной матриц и последующего перлитного превращения, что обеспечивает упрочнение. Закалку чугуна на мартенсит с нагревом до 850…930 °С и охлаждением в воде и масле применяют для повышения прочности и износостойкости. После закалки проводят низкий отпуск (200 °С) для уменьшения закалочных напряжений или высокий отпуск (600…700 °C для получения микроструктур сорбита или зернистого перлита, обеспечивающих повышенную вязкость.
Классификацию чугунов проводят по виду и форме углеродосо-держащей структурной составляющей, то есть по наличию и форме графита.
По виду структурной составляющей выделяют чугуны без графита — белые чугуны, в которых практически весь углерод находится в химически связанном состоянии в виде цементита. Промежуточное положение занимает половинчатый чугун, большая (« 0,8 %) часть углерода которого находится в РезС. Структура половинчатого чугуна — перлит, ледебурит и пластинчатый графит.
Чугуны с графитом в зависимости от формы последнего разделяют на серые, и высокопр очные. Серыми называют чугуны, в структуре которых графит имеет пластинчатую форму. В ковких чу-гунах графит имеет хлопьевидную форму, в высокопрочных чугунах -шаровидную. К числу высокопрочных относят также чугуны с графитом вермикулярной (греч. — червячок) формы, которые по свойствам (ГОСТ 28394—89) занимают промежуточное положение между чугунами с шаровидным и пластинчатым графитом.
Белые чугуны
Белые чугуны редко используются в народном хозяйстве в качестве конструкционных материалов, так как из-за большого содержания цементита очень хрупкие и твердые, с трудом отливаются и обрабатываются инструментом. Из них делают детали гидромашин, пескометов и других конструкций, работающие в условиях повышенного абразивного изнашивания. Для увеличения изно-состойкости белые чугуны легируют хромом, ванадием, молибденом и другими карбидообразующими элементами. белых чугунов не установлена.
Разновидностью белых чугунов является отбеленные чугуны. Поверхностные слои изделий из таких чугунов имеют структуру белого (или половинчатого) чугуна, а сердцевина — серого чугуна. Отбел на некоторую глубину (12…30 мм) получают путем быстрого охлаждения поверхности (например, чугуна в металлические или песчаные формы).
Железоуглеродистые сплавы — стали и чугуны
... чугуном с вермикулярным графитом между серым и ковким. Таким образом, прочность чугуна (в отношении нормальных напряжений) определяется строением металлической основы и формой ... сталь. Сталь — важнейший материал, используемый в машиностроении. В отличие о ... 1.3. Маркировка и область применения чугуна Согласно ГОСТ 4832-86, установлены следующие марки отливок из серого чугуна (СЧ): СЧ00, СЧ120, СЧ150, ...
Для снятия структурных напряжений, которые могут привести к образованию трещин , отливки подвергают нагреву при 500…550 °С. Высокая иэносостойкость отбеленных чугунов обусловлена твердостью поверхности, достигающей 400… 500 HV. Из отбеленного чугуна изготовляют прокатные валки листовых станов, колеса, шары для мельниц и др.
Серые чугуны
Структура серого (литейного) чугуна состоит из металлической основы с графитом пластинчатой формы, вкрапленным в эту основу. Такая структура образуется непосредственно при чугуна в отливке в соответствии с диаграммой состояния системы Fe—С (стабильной).
Причем, чем больше углерода и кремния в сплаве и чем ниже скорость его охлаждения, тем выше вероятность кристаллизации по этой диаграмме с образованием графитной эвтектики. При низком содержании углерода и кремния чугун модифицируют небольшими дозами некоторых элементов (например, алюминий, кальций , церий).
Модифицирование металлов — введение в металлические расплавы модификаторов, то есть , небольшие количества которых (обычно не более десятых долен %) способствуют созданию дополнительных искусственных центров кристаллизации, и следовательно, образованию структурных составляющих в измельченной или округлой форме, что улучшает механические свойства металла.
Для характеристики структуры серого чугуна необходимо определять размеры, форму, распределение графита, а также структуру металлической основы. В обычном сером чугуне при медленном охлаждении во время кристаллизации графит очень слабо разветвляется. Он похож на розетку с небольшим числом изогнутых лепестков.
Металлическая основа серых чугунов формируется из аустени-та при эвтектоидном распаде и может быть перлитной, ферритной и ферритно-перлитной. Образование перлита происходит легко, в сравнительно короткий промежуток времени. Для получения ферритного белого чугуна используют изотермическую выдержку при 690…650 °С, в результате которой цементит перлита распадается на феррит и пластинчатый графит.
Механические свойства серых чугунов зависят от свойств металлической основы и, главным образом, от количества, формы и размеров графитных включений. Перлитная основа обеспечивает наибольшие значения показателей прочности и износостойкости.
Марки серых чугунов согласно ГОСТ 1412—85 состоят из букв «СЧ» и цифр, соответствующих минимальному пределу прочности при растяжении Ств, МПа / 10. Чугун СЧ10 — ферритный; СЧ15, СЧ18, СЧ20 — ферритно-перлитные чугуны, начиная с СЧ25 — перлитные чугуны.
На долю серого чугуна с пластинчатым графитом приходится около 80 % общего чугунных отливок. Серые чугуны обладают высокими литейными качествами (жидкотекучесть, малая усадка , незначительный пригар металла к форме и др.), хорошо обрабатываются и сопротивляются износу, однако из-за низких прочности и пластических свойств в основном используются для неответственных деталей. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, колонки, каретки и др.); в автомобилестроении из ферритно-перлитных чугунов делают картеры, крышки, тормозные барабаны и др., а из перлитных чугунов — блоки цилиндров, гильзы , маховики и др. В строительстве серый чугун применяют, главным образом, для изготовления деталей, работающих при сжатии (башмаков, колонн), а также санитарно-технических деталей (отопительных радиаторов, труб ).
Классификация чугуна
... до КЧ 50-5. Расшифровка марки такая же, как и у высокопрочного чугуна. Все виды чугуна обладают хорошими литейными свойствами, а также хорошо противостоят коррозии. Из серых ... прочным, но в то же время, наименее пластичным, является чугун на перлитной основе. Чугун на ферритной основе обладает наивысшей пластичностью при наименьшей прочности. Структура металлической основы зависит ...
Значительное количество чугуна расходуется для изготовления тюбингов, из которых сооружается туннель метрополитена. Из серого чугуна, содержащего фосфор (0,5 %), изготавливают архитектурно-художественные изделия.
Ковкие чугуны
Ковкие чугуны с хлопьевидной формой графита получают из белых доэвтектических чугунов, подвергая их специальному графитизирующему отжигу. Графитизирующий отжиг белого чугуна основан на метастабильности цементита и состоит обычно из двух стадий .
Первая стадия (950…1050 °С) подбирается по длительности такой, чтобы весь цементит, находящийся в структуре отливки, распался на аустенит и хлопьевидный графит. Процесс графитообразования облегчается при модифицировании (например, алюминием и бором).
Чугун, полученный таким образом, называется модифицированным.
На второй стадии графитизирущего отжига при температуре эвтектоидного превращения формируется металлическая основа ковкого чугуна. В зависимости от режимов охлаждения ковкие чугуны могут иметь перлитную (непрерывное охлаждение), ферритную (очень медленное охлаждение в интервале 760…720 °С или изотермическая выдержка при 720…700 °С) или ферритно-перлитную (сокращение продолжительности второй стадии отжига) металлические основы. Для получения в модифицированном ковком чугуне перлитной основы рекомендуется увеличивать содержание марганца, хрома и некоторых других элементов, которые повышают устойчивость цементита к распаду на феррит и пластинчатый графит в области температур эвтектоидного превращения.
Ковкие чугуны с перлитной металлической основой обладают высокими твердостью (235…305 НВ) и прочностью (Ств = 650…800 МПа) в сочетании с небольшой (5 = 3,0…1,5 %).
Ковкий ферритный чугун характеризуется высокой пластичностью (5 = 10…12 %) и относительно низкой прочностью (Ств = 370…300 МПа).
Существенными недостатками графитизирующего отжига чугунов является длительность (24…60 ч) отжига отливок и ограничение толщины их стенок.
Ковкие чугуны согласно ГОСТ 1215—79 маркируются двумя буквами (КЧ — ковкий чугун) и двумя группами цифр. Первые две цифры в обозначении марки соответствуют минимальному пределу прочности при растяжении (7в, МПа / 10, цифры после тире — относительному удлинению при растяжении, °’о. Чугуны марок КЧЗО—6, КЧЗЗ—8, КЧ35—10, КЧ37—12, имеющие повышенное значение удлинения при растяжении, относятся к ферритным, а марок КЧ45—7, КЧ50—5, КЧ55—4, КЧ60—3, КЧ65—3, КЧ70—2, КЧ80—1.5 — к перлитным чугунам.
Ковкие чугуны, обладая высокими пластическими свойствами, находят применение при изготовлении разнообразных тонкостенных (до 50 мм) деталей, работающих при ударных и вибрационных нагрузках, — фланцы, , картеры, ступицы и др. Масса этих деталей —от нескольких граммов до нескольких тонн.
Для повышения твердости, износостойкости и прочности изделий из ковкого чугуна иногда применяют нормализацию или закалку. Закалка с последующим высоким отпуском позволяет получить структуру зернистого перлита.
Классификация и маркировка чугунов
... для увеличения связанного углерода, повышения твердости, прочности и износостойкости серого, ковкого и высокопрочного чугунов. При нормализации чугун нагревают выше температур интервала превращения (850−950оС) и после ... структура с максимальной твёрдостью HRC 55 -60. В чугунах высокопрочных, аустенит которых обладает пониженной критической скоростью закалки, твёрдость после закалки достигает HRC ...
Высокопрочные чугуны
Высокопрочный чугун (ЧШГ — чугун с шаровидным графитом) получают модифицированием жидкими присадками (0,1…0,5 °о от массы обрабатываемой порции чугуна, 0,2…0,3 °о церия, иттрия и некоторых других элементов).
При этом перед вводом модификаторов необходимо снизить содержание серы до 0,02…0,03 %.
Рекомендуемый химический состав высокопрочного чугуна (2,7…3,7 % С; 0,5…3,8 % Si) выбирается в зависимости от толщины стенок отливки (чем тоньше стенка, тем больше углерода и кремния).
Чтобы избежать образования в высокопрочных чугунах ледебурита, их подвергают графитизирующему отжигу. Продолжительность такого отжига благодаря повышенному содержанию графити-зирующих элементов (углерода, кремния) значительно короче, чем при отжиге белого чугуна.
Структура высокопрочного чугуна состоит из металлической основы (феррит, перлит) и включений графита шаровидной формы. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу, чем пластинчатый графит, и не является активным концентратором напряжений. Ферритные чугуны имеют сто,2 = 220…310 МПа, 5 = 22…10 «/о, 140…225 НВ, перлитные —ао,2= 370…700 МПа, 5 = 7…2 % и 153…360 НВ. Марки высокопрочных чугунов согласно ГОСТ 7293—85 состоят из букв «ВЧ» и цифр, соответствующих минимальному пределу прочности при растяжении Ста, МПа / 10: ВЧ35, ВЧ40, ВЧ45 — ферритные чугуны; ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ 100—перлитные чугуны.
Высокопрочные чугуны обладают хорошими литейными и потребительскими свойствами (обрабатываемость резанием, способность гасить вибрации, высокая износостоикость и др.) свойствами. Они используются для массивных отлив,ок взамен стальных литых и кованых деталей — цилиндры, , коленчатые и распределительные валы и др.
Для повышения механических свойств (пластичности и вязкости) и снятия внутренних напряжений отливки подвергают термической обработке (отжигу, нормализации, закалке и отпуску).
Рекомендуется подвергать чугунные изделия объемной закалке. Образование мелкоигольчатого мартенсита в закаленном поверхностном слое изделий повышает их износостоикость в три и более раз. Для повышения износостойкости применяется также азотирование (или азотирование с последующей «обдувкой дробью»), при котором в поверхностных слоях изделий создаются благоприятные сжимающие напряжения.
Чугуны специального назначения
К этой группе чугунов относятся жаростойкие (ГОСТ 7769—82), жаропрочные и коррозионностойкие (ГОСТ 11849—76) чугуны. Сюда же можно отнести немагнитные, износостойкие и антифрикционные чугуны.
-Жаростойкими являются серые и высокопрочные чугуны, легированные кремнием (ЧС5) и хромом (4Х28, 4Х32).
Эти чугуны обладают до 700…800°С на воздухе, в топочных и генераторных газах. Высокой термо- и жаростойкостью обладают аустенитные чугуны: высоколегированный никелевый серый ЧН15Д7 и с шаровидным графитом ЧН15ДЗШ.
К жаропрочным чугунам относятся аустенитные чугуны с шаровидным графитом ЧН19ХЗШ и ЧН11Г7Ш. Для повышения чугуны подвергают отжигу с последующим отпуском. После отжига легированные карбиды приобретают форму мелких округлых включений.
Сравнительная характеристика чугуна и стали
... временного сопротивления разрыву в кгс/мм); антифрикционный чугун o антифрикционный серый - АЧС, o антифрикционный высокопрочный - АЧВ, o антифрикционный ковкий - АЧК; чугун с шаровидным графитом для отливок ... относительное удлинение и сужение . Чугун обладает хорошими литейными свойствами, хорошо обрабатывается резанием, сопротивляется износу, обладает способностью рассеивать колебания при ...
В качестве коррозионностойких применяют чугуны, легированные кремнием (ферросилиды) — ЧС13, ЧС15, ЧС17 и хромом — 4Х22, 4Х28, 4Х32. Они обладают высокой коррозионной стойкостью в серной, азотной и ряде органических кислот. Для повышения коррозионной стойкости кремнистых чугунов их легируют молибденом (4С15М4, 4С17МЗ — антихлоры).
Введение в чугун 0,2…0,5 % Мо уменьшает склонность к росту зерна, повышает вязкость, сопротивление износу и улучшает свойства при повышенных температурах. Высокой коррозионной стойкостью в обладают никелевые чугуны, например аустенитный чугун 4Н15Д7.
В качестве немагнитных чугунов также применяются аустенитные чугуны. Их используют в тех случаях, когда требуется минимальная потеря мощности (крышки масляных выключателей, концевые коробки трансформаторов и др.) или когда нужно избегать искажений магнитного поля (стойки для магнитов).
К износостойким чугунам относятся половинчатые и отбеленные чугуны. К износостойким половинчатым чугунам относится, например, серый чугун марки И4НХ2, легированный никелем и хромом, а также чугуны И4ХНТ, И4Н1МШ (с шаровидным графитом).
Из этих чугунов отливают детали двигателей внутреннего сгорания (крышки и цилиндров, головки поршней и др.).
Антифрикционными чугунами являются серые и высокопрочные чугуны специальных марок. Некоторое применение нашли также ковкие антифрикционные ферритно-перлитные чугуны -А4К-1 и А4К-2.
Антифрикционные серые чугуны — перлитные чугуны АЧС-1 и АЧС-2 и перлитно-ферритный чугун АЧС-3. Эти чугуны обладают низким коэффициентом , зависящим от соотношения феррита и перлита в основе, а также от количества и формы графита. В перлитных чугунах высокая износостойкость обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфорной эвтектики при наличии изолированных выделений пластинчатого графита.
Антифрикционные серые чугуны применяют для изготовления подшипников , втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Детали, работающие в паре с закаленными или нормализованными стальными валами, изготавливают из чугунов АЧС-1 и АЧС-2, а для работы в паре с термически необработанными валами применяют чугун АЧС-3.
Антифрикционные высокопрочные (с шаровидным графитом) чугуны (ГОСТ 1585—85) изготовляют с перлитной структурой — АЧВ-1 и ферритно-перлитной (« 50 % перлита) — АЧВ-2. АЧВ-1 используется для работы в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом. АЧВ-2 применяют для пары с валом в состоянии поставки («сырым»).
Главное достоинство антифрикционных чугунов по сравнению с баббитами и антифрикционными бронзами — низкая стоимость, а основной недостаток — плохая прирабатываемость, что требует точного сопряжения трущихся поверхностей.