Генераторная установка состоит из электрогенератора и регулятора напряжения. Они, вместе с элементами контроля работоспособности и защиты от возможных аварийный режимов, образуют систему электроснабжения автомобиля.
Генераторная установка обеспечивает питанием электропотребители, включенные в бортовую сеть автомобиля, и заряжает его аккумуляторную батарею при работающем двигателе.
Даже на холостом ходу двигателя генератор должен развивать мощность, достаточную для электропитания наиболее важных потребителей. В мировой практике генераторные установки на холостом ходу двигателя развивают 40-50% от номинальной мощности.
Напряжение в бортовой сети автомобиля должно быть стабильно в широком диапазоне изменения частоты вращения коленчатого вала двигателя и нагрузок.
Стабильность напряжения, обеспечиваемая работой регулятора, является непременным условием надежной работы аккумуляторной батареи и других электропотребителей.
Генераторные установки рассчитаны на номинальное напряжение 14 и 28 В. Напряжение 28 В характерно для автомобилей с дизелем. Однако на дизельных автомобилях, например, на автомобилях ЗИЛ 5301 (“Бычок”), ЗИЛ 4331, ЗИЛ 133ГЯ возможна и двухуровневая система: 14 В непосредственно на генераторе для электроснабжения основных потребителей, 28 В — на выходе трансформаторно-выпрямительного блока для подзарядки аккумуляторной батареи.
Генераторные установки выполняются по однопроводной схеме, в которой с корпусом соединен отрицательный полюс системы отечественной нормативной документацией предусматривается изготовление установок и по двухпроводной схеме, но практически такое исполнение не реализуется.
Генераторная установка питает ботовую сеть автомобиля постоянным током. Однако известно, что механическую энергию можно преобразовать в электрическую только Посредством переменного тока. Поэтому ранее автомобили снабжались выпрямителем-коллектором со щетками в генераторах постоянного тока, а теперь — полупроводниковым выпрямителем в повсеместно применяющихся автомобильных вентильных генераторах.
Для питания вспомогательных устройств, например, реле блокировки стартера, трансформаторно-выпрямительного блока систем на два уровня напряжения, тахометра и т.п., используется переменный ток, вырабатываемый генератором. В последнее время наблюдается тенденция использовать переменный ток и для управления работой регулятора напряжения самой генераторной установки.
Генераторная установка — достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и т.п. Принцип действия вентильного электрогенератора и его принципиальное конструктивное устройство одинаковы как у отечественных, так и у зарубежных образцов.
Разработка автоматизированной системы дистанционного управления ...
... 2 - Система подогрева двигателя 1.4 Техническое задание на разработку Настоящий стандарт распространяется на автоматизированные системы (АС) для автоматизации различных видов деятельности (управление, проектирование, исследование ... установку и обслуживание. Электроподогреватель можно применять не только как средство предпускового подогрева двигателя, но и в течение всего периода стоянки автомобиля, ...
генератор переменный ток напряжение
1. Устройство и работа генератора переменного тока
Вал генератора приводится во вращение от шкива, установленного на коленчатом валу двигателя, клиновидным ремнем. Передаточное число клиноременной передачи 1,7—2,0. При движении автомобиля частота вращения коленчатого вала при холостом ходе у современных двигателей составляет 500—600 об/мин, максимальная частота 4000—5000 об/мин. Таким образом, кратность изменения частоты вращения двигателя, а, следовательно, и вала генератора может достигать 8 — 10. Напряжение генератора зависит от частоты вращения его вала. Чем выше частота, тем больше напряжение генератора. Однако все приборы электрооборудования автомобиля, особенно лампы и контрольно-измерительные приборы, рассчитаны на питание от постоянного напряжения 12 или 24 В. Поддержание постоянства напряжения генератора независимо от изменения частоты вращения и нагрузки генератора (включения потребителей) выполняет специальный прибор, называемый регулятором напряжения.
При снижении частоты вращения коленчатого вала двигателя ниже 500-700 -об /мин напряжение генератора становится меньше напряжения аккумуляторной батареи. Если батарею не отключить от генератора, она начнет разряжаться на генератор, что может привести к перегреву изоляции обмоток генератора и разряду аккумуляторной батареи. При увеличении частоты вращения коленчатого вала двигателя необходимо вновь включить генератор в систему электрооборудования. Включение генератора в систему электрооборудования, когда его напряжение выше напряжения аккумуляторной батареи, и отключение генератора от сети, когда его напряжение ниже напряжения аккумуляторной батареи, выполняет специальный прибор, называемый реле обратного тока.
Генератор рассчитан на отдачу определенной максимальной для данного генератора величины тока, однако при неисправности в системе электрооборудования (разряженная аккумуляторная батарея, короткое замыкание и т. д.) генератор может отдавать ток больший, чем тот, на который он рассчитан. Длительная работа генератора в таком режиме приведет к его перегреву и сгоранию изоляции обмоток. Для защиты генератора от перегрузки служит специальный прибор, называемый ограничителем тока.
Все три прибора — регулятор напряжения, реле обратного тока и ограничитель тока—объединены в одном устройстве, называемом реле-регулятором.
В некоторых генераторах, например Г-250, переменного тока реле обратного тока и ограничитель тока могут отсутствовать, но в конструкции генератора имеются устройства, выполняющие функции этих приборов.
На рис. 1 показано устройство генератора переменного тока Г-250. Генератор имеет статор 6 с трехфазной обмоткой, выполненной в виде отдельных катушек, насаженных, на зубцы статора. В каждой фазе имеется по шесть катушек, соединенных последовательно. Фазные обмотки статора соединены звездой, и их выходные зажимы подключены к выпрямительному блоку 10.
Измерение силы тока и напряжения
... полярности тока, амперметры постоянного тока должны иметь шкалу с нулевой отметкой посередине. Измерение напряжения 1. силовых преобразователей, аккумуляторных батарей, зарядных и подзарядных устройств. 2. генераторов постоянного и переменного тока, синхронных ...
Рис. 1 Устройство генератора переменного тока Г-250
Корпус статора набран из отдельных пластин электротехнической стали. Обмотка возбуждения 4 генератора выполнена в виде катушки и помещена на стальной втулке клювообразных полюсов ротора 13. Втулка, клювообразные полюсы ротора и контактные кольца 5 жестко закреплены на валу 3 ротора (прессовая посадка на накатку).
Магнитное поле, создаваемое обмоткой возбуждения, проходя через торцы клювообразных полюсов, образует северные и южные полюсы на роторе(рис. 2) (Е.В. Михайловский, «Устройство автомобиля», с. 163).
Рис. 2 Ротор
При вращении ротора магнитное поле полюсов ротора пересекает витки катушек обмотки статора, индуктируя в каждой фазе переменную э.д.с. (рис. 3,б).
Рис. 3 Схема выпрямления переменного тока
Ток в обмотке возбуждения подводится через щетки 8 (рис.1) и контактные кольца 5, к которым припаяны концы обмотки возбуждения. Щётки укреплены в щеткодержателе 9.
Статор генератора с помощью стяжных болтов закреплен между крышками 1 и 7, которые имеют кронштейны крепления генератора к двигателю. В крышке 1 со стороны привода вверху имеется резьбовое отверстие для крепления натяжной планки, с помощью которой регулируется натяжение приводного ремня генератора. Крышки отлиты из алюминиевого сплава.
С целью уменьшения износа посадочное место под шарикоподшипник в задней крышке 7 и отверстия в кронштейнах крышек армированы стальными втулками.
В крышках установлены шариковые подшипники 2 и 12 с двусторонним уплотнением и смазкой, заложенной на весь срок службы подшипника.
На выступающий конец вала 3 ротора крепится наружный вентилятор 14 (рис. 1) и шкив 15. В крышках имеются вентиляционные окна, через которые проходит охлаждающий воздух. Направление движения охлаждающего воздуха — от крышки со стороны контактных колец к вентилятору.
В крышке со стороны контактных колец устанавливается выпрямительный блок 10, собранный из кремниевых вентилей (диодов), допускающих рабочую температуру корпуса плюс 150°С.
2. Принцип действия вентильного генератора
Преобразование механической энергии, которую автомобильный генератор получает от двигателя внутреннего сгорания через ременную передачу, в электрическую происходит, как и в любом генераторе, в соответствии с явлением электромагнитной индукции. Суть явления состоит в том, что, если изменять магнитный поток, пронизывающий катушку, витки которой выполнены из проводящего материала, например, медного провода, то на выводах катушки появляется электрическое напряжение, равное произведению числа ее, витков на скорость изменения магнитного потока. Совокупность таких катушек образует в. генераторе обмотку статора. Возможны два варианта изменения магнитного потока: по величине и направлению, что обеспечивается в щеточной конструкции вентильного генератора, или только по величине, что характерно для индукторного бесщеточного генератора. Для образования магнитного потока достаточно пропустить через катушку электрический ток. Эта катушка образует обмотку возбуждения. Сталь, в отличие от воздуха, хорошо проводит магнитный поток. Поэтому основные узлы генератора, в которых происходит преобразование механической энергии в электрическую, состоят из стальных участков и обмоток, в которых создается магнитный поток при протекании в них электрического тока (обмотка возбуждения), и возникает электрический ток при изменении этого потока (обмотка статора).
Охлаждение синхронных генераторов
... машины. Номинальное напряжение генератора – это линейное (междуфазное) напряжение обмотки статора в номинальном режиме. Номинальным током статора генератора называется то значение тока, при котором допускается длительная номинальная работа генератора при нормальных параметрах охлаждения (температура, ...
Обмотка статора с его магнитопроводом образует собственно статор, главную неподвижную часть, а обмотка возбуждения с полюсной системой и некоторыми другими деталями, (валом, контактными кольцами) — ротор, главную вращающуюся часть.
Питание обмотки возбуждения осуществляется от источника постоянного тока, например, от аккумуляторной батареи или от самого генератора. В последнем случае генератор работает на самовозбуждении, его первоначальное напряжение образуется за счет остаточного магнитного потока, который создается стальными частями ротора даже при отсутствии тока в обмотке возбуждения. Это напряжение вызывает появление электрического тока в обмотке возбуждения, в результате чего магнитный поток усиливается и вызывает лавинный процесс возбуждения генератора. Однако самовозбуждение генератора происходит на слишком высоких частотах вращения ротора. Поэтому в схему генераторной установки, если обмотка возбуждения не, соединена с аккумуляторной батареей, вводят такое соединение через контрольную лампу мощностью 2-3 Вт., Небольшой ток, поступающий через эту лампу в обмотку возбуждения, обеспечивает возбуждение генератора при низких частотах вращения ротора. При работе генератора напротив катушек обмотки статора устанавливается то южный, то северный полюс ротора, при этом направление магнитного потока, пронизывающего катушку, изменяется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения f зависит от частоты вращения ротора n и числа пар полюсов р генератора:
У всех автомобильных генераторов отечественного производства и, за редким исключением, генераторов зарубежных фирм шесть пар полюсов, при этом частота переменного тока в обмотке статора, выраженная в Гц, меньше частоту вращения ротора генератора, измеряемой в мин-1, в 10 раз.
С учетом передаточного числа ременной передачи i от двигателя к генератору, частота переменного тока, выраженная через частоту вращения коленчатого вала двигателя nдв определяется соотношением:
Следовательно, по частоте переменного тока генератора можно измерять частоту вращения коленчатого вала двигатели, что и используется в реальных схемах подключением тахометра или любого другого устройства, реагирующего на частоту вращения коленчатого вала, к выводу обмотки статора.
Обмотка статора как отечественных, так и зарубежных генераторов — трехфазная. Она состоит из трех обмоток фаз, которые иногда называют просто фазами, токи и напряжения в которых смещены на 120 электрических градусов, как показано на рис. 3.1.
Фазы могут соединяться в “звезду” или “треугольник”. При этом различают фазные и линейные напряжения и токи. Фазные напряжения действуют между выводами обмоток фаз, а токи протекают в этих обмотках, линейные напряжения действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т.е. линейные.
При соединении в “треугольник” фазные токи в v3 раза меньше линейных, в то время как у “звезды” линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз при соединении в “треугольник” значительно меньший, чем у “звезды”.
Поэтому в генераторах большой мощности довольно часто применяют соединение типа “треугольник”, т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейное напряжение у “звезды” в v3 раз больше фазного, в то время как у “треугольника” они равны, и для получения такого же выходного напряжения при тех же частотах вращения ротора “треугольник” требует соответствующего увеличения числа витков его фаз по сравнению со “звездой”.
Генератор переменного тока (2)
... позволяют получать большие токи при достаточно высоком напряжении. Генератор переменного тока - это машина, преобразующая механическую энергию вращения в электрическую энергию переменного тока. Различают синхронные и асинхронные генераторы переменного тока. Асинхронные генераторы, имевшие ограниченное применение, ...
Более тонкий провод можно применять и при соединении типа “звезда”. В этом случае обмотку выполняют из двух параллельно соединенных обмоток, каждая из которых соединена в “звезду”, т.е. соединением “двойная звезда”.
Выпрямитель содержит для трехфазной системы шесть силовых полупроводниковых диодов, три из которых VD1, VD3, VD5 соединены с выводом “+”генератора, а три — VD2, VD4, VD6 — с выводом “-” (“массой”).
Однако стремление повысить мощность генератора привело к увеличению числа диодов выпрямителя до восьми и применению дополнительного плеча выпрямителя, на диодах VD7, VD8, показанного на рис. 3.1 пунктиром
Такая схема выпрямителя может иметь место только при соединении обмоток статора в “звезду”, так как дополнительное плечо запитывается от “нулевой” точки “звезды”. Подключение обмотки возбуждения к собственному выпрямителю на диодах VD9 — VD11 препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля.
Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не .пропускают ток при обратном напряжении.
По графику фазных напряжение (рис. 3.1) можно определить, какие диоды открыты, какие закрыты в данный момент, времени. Фазное напряжение Uф1 действует в обмотке первой фазы, Uф2 второй, Uф3 -.третьей. Эти напряжения изменяются по кривым, близким к синусоиде, и в одни моменты времени они положительны, в другие отрицательны.
Если, положительное направление напряжения в фазе принять по стрелке, направленной к нулевой точке обмотки статора, а отрицательное от нее, то, например, для момента времени t1, когда напряжение второй фазы отсутствует, первой фазы — положительно, а третьей — отрицательно, направление напряжений фаз, соответствует стрелкам на рис. 3.1. Ток через обмотки, диоды и нагрузку будет протекать в направлении этих стрелок. При этом открыты диоды VD1, VD4. Рассмотрев любые другие моменты времени, легко убедиться, что диоды силового выпрямителя переходят из открытого состояния в закрытое и обратно таким образом, что ток в нагрузке имеет только одно направление — от вывода “+” генераторной установки к её выводу “-”, т.е. в нагрузке протекает постоянный (выпрямленный) ток. Диоды выпрямителя обмотки возбуждения работают аналогично, питая выпрямленном током эту обмотку. В выпрямитель обмотки возбуждения входят также 6 диодов, но три из них — VD2, VD4, VD6 — общие с силовым выпрямителем. Ток в обмотке возбуждения значительно меньше, чем ток отдаваемый генератором в нагрузку. Поэтому в качестве диодов VD9 — VD11 применяются малогабаритные слаботочные диоды, рассчитанные на ток не более 2 А.
Плечо выпрямителя, содержащее диоды VD7, VD8, вступает в работу только в том случае, если фазные напряжения генератора отличаются от синусоиды, что и имеет место в реальных генераторах. Напряжение любой формы можно представить в виде суммы синусоид, которые называются гармоническими составляющими или гармониками — первой, частота которой совпадает с частотой фазного напряжения, и высших, главным образом третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник, первой и третьей, показано на рис. 3.2.
Генератор с регулятором напряжения
... загорается, предупреждая о неисправности генератора. Регулятор напряжения Генераторная установка оснащена полупроводниковым электронным регулятором напряжения, встроенным внутрь генератора. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от ...
Из электротехники известно, что в линейном напряжении, т.е. в том напряжении, которое проводами подводится к выпрямителю и выпрямляется, третья гармоника отсутствует: Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т.е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимно уничтожают друг друга в линейном напряжении.
Таким образом, третья гармоника напряжения в фазном напряжении присутствует, а в линейном — нет. Следовательно, мощность, развиваемая третьей гармоникой фазного напряжения, не может быть использована потребителем. Чтобы потребители могли использовать эту мощность, добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т.е. к точке, где сказывается действие фазного напряжения. Таким образом, диоды VD7, VD8 выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает номинальную мощность генератора.
Kaк видно на рис. 3.1, выпрямленное напряжение носит пульсирующий характер. Применение дополнительного плеча на диодах VD7, VD8 усугубляет глубину пульсации. Однако наличие аккумуляторной батареи, которая является своеобразным фильтром, сглаживает напряжение в бортовой сети автомобиля. При этом ток в самой батарее пульсирует.
3. Принцип действия регулятора напряжения
Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды.
Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки, от аварийных режимов и перегрузки, автоматически включать, в бортовую сеть цель обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.
Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами — частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение, генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение. Все регуляторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.
Блок-схема регулятора напряжения представлена на рис. 3.3. Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий элемент 4. Измерительный элемент воспринимает напряжение генератора 2 Ud и преобразует его в сигнал Uизм, который в элементе сравнения сравнивается с эталонным значением Uэт.
Если величина Uизм отличается от эталонной величины Цэт на выходе измерительного элемента появляется сигнал u0, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.
Реферат регулятора напряжения
... обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VT2, транзистор VT1, открывается составной транзистор VT2,VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и процесс повторяется. Таким образом регулирование напряжения генератора регулятором ...
Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединении его в схему растет.
Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через себя ток, если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным. Ток через стабилитрон включает электронное реле, которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. В вибрационных и контактно-транзисторных регуляторах чувствительный элемент представлен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина — это сила натяжения пружины, противодействующей силе притяжения электромагнита. Коммутацию в цепи обмотки возбуждения осуществляют контакты реле или, в контактно-транзисторном регуляторе, полупроводниковая схема, управляемая этими контактами. Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно-транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.
Поскольку вибрационные и контактно-транзисторные регуляторы представляют лишь исторический интерес, а в отечественных и зарубежных генераторных установках в настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы, близкой к отечественному регулятору напряжения Я112А1 и регулятору EE14V3 фирмы BOSCH (рис. 3.4).
Регулятор 2 на схеме работает в комплекте с генератором 1, имеющим дополнительный выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается, и по нему начинает протекать ток.
Транзисторы же пропускают ток между коллектором и эмиттером, т.е. открыты, если в цепи база-эмиттер ток протекает, и не пропускают этого тока, т.е. закрыть), если базовый ток прерывается.
Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1, R2. Пока напряжение генератора невелико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон закрыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вывода Д поступает в базовую цепь транзистора VT2, он открывается, через его переход эмиттер-коллектор начинает протекать ток в базе транзистора VT3, который открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер-коллектор VT3 подключена к цепи питания. Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния, Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1.
При достижении этим напряжением величины напряжения стабилизации стабилитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер-коллектор закорачивает вывод базы составного транзистора VT2, VT3 на “массу”. Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VD2, транзистор VT1, открывается составной транзистор VT2, VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и т.д., процесс повторяется.
Таким образом регулировка напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяется так, как показано на рис. 3.5. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла — увеличивается.
В схеме регулятора по рис. 3.4 имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью.
В этом случае ток обмотки возбуждения может замыкаться через этот диод, и опасных всплесков напряжения не происходит. Поэтому диод VD2 называется гасящим. Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R2 делителя напряжения. При этом напряжение на стабилитроне VD2 резко уменьшается, что ускоряет переключение схемы регулятора и повышает частоту этого переключения. Это благотворно сказывается на качестве напряжения генераторной установки. Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе.
Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо ускоряют переключения транзисторов.
В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзисторам, следовательно, снижая потери мощности в нем и его нагрев.
Из рис. 3.4 хорошо видна роль лампы контроля работоспособного состояния генераторной установки HL.
При неработающем двигателе внутреннего сгорания замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA через эту лампу поступать в обмотку возбуждения генератора. Этим обеспечивается первоначальное возбуждение генератора. Лампа при этом горит, сигнализируя, что в цепи обмотки возбуждения нет обрыва.
После запуска двигателя, на выводах генератора Д и “+” появляется практически одинаковое напряжение и лампа гаснет. Если генераторная установка при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генераторной установки или обрыве приводного ремня. Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбуждения, то лампа HL загорится.
Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры — понижалось.
Для автоматизации процессов изменения уровня поддерживаемого напряжения применяется датчик, помещённый в электролит аккумуляторной батареи и включаемый в схему регулятора напряжения. В простейшем случае термокомпенсация в регуляторе подобрана Таким образом, что в зависимости от температуры поступающего в генератор охлаждающего воздуха напряжение генераторной установки изменяется в заданных пределах.
В рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключении в цепи обмотки возбуждения изменяется по мере изменения, режима работы генератора. Нижний предел этой частоты составляет 25-50 Гц.
Однако имеется и другая разновидность схем электронных регуляторов, в которых частота переключения строго задана. Регуляторы такого типа оборудованы широтно-импульсным модулятором (ШИМ), который и обеспечивает заданную частоту переключения. Применение ЩИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсации выпрямленного напряжения и т.п.
В настоящее время все больше зарубежных фирм переходит на выпуск генераторных установок без дополнительного выпрямителя. Для автоматического предотвращения разряда аккумуляторной батареи при неработающем двигателе автомобиля в регулятор такого типа заводится фаза генератора. Регуляторы, как правило, оборудованы ШИМ, который, например, при неработающем двигателе переводит выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера.
После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы.
Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.
4. Электрические схемы генераторных установок
Принципиальные электрические схемы генераторных установок приведены на рис. 3.6. Генераторные установки могут иметь следующие обозначения выводов: “плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ; “масса”: “-”, D-, 31, В-, М, Е, GRD; вывод обмотки возбуждения: Ш, 67, DF, F, ЕХС, Е, FLD; вывод для соединения с лампой контроля исправности (обычно “плюс” дополнительного выпрямителя, там, где он есть): D, D+, 61, L, WL, IND; вывод фазы: ~, W, R, STA, вывод нулевой точки обмотки статора: 0, Мр; вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S; вывод регулятора напряжения для питания его от выключателя зажигания: IG; вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
Различают два типа невзаимозаменяемых регуляторов напряжения в — одном типе (рис. 3.6, а) выходной коммутирующий элемент регулятора напряжения соединяет вывод обмотки возбуждения генератора с “+” бортовой сети, в другом типе (рис. 3.6, б, в) — с “-” бортсети. Транзисторные регуляторы напряжения второго, типа являются более распространенными.
Чтобы на стоянке аккумуляторная батарея не разряжалась, цепь обмотки возбуждения генератора (в схемах 3.6, а, б) запитывается через выключатель зажигания. Однако при этом контакты выключателя коммутируют ток до 5А, что неблагоприятно сказывается на их сроке службы. Разгрузить контакты выключателя можно, используя промежуточное реле, но более прогрессивно, если через выключатель зажигания запитывается лишь цепь управления регулятора напряжения (рис. 3.6, в), потребляющая ток силой в доли ампера. Прерывание тока в цепи управления переводит электронное реле регулятора в выключенное состояние, что не позволяет току протекать через обмотку возбуждения. Однако применение выключателя зажигания в цепи генераторной установки снижает ее надежность и усложняет монтаж на автомобиле. Кроме того, в схемах на рис. 3.6, а, б, в падение напряжения в выключателе зажигания и других коммутирующих или защитные элементах, включенных в цепь регулятора (штекерные соединения, предохранители), влияет на уровень поддерживаемого регулятором напряжения и частоту переключения его выходного транзистора, что может сопровождаться миганием ламп осветительной и светосигнальной аппаратуры, колебанием стрелок вольтметра и амперметра.
Поэтому более перспективной является схема на рис. 3.6, д. В этой схеме обмотка возбуждения имеет свой дополнительный выпрямитель, состоящий из трех диодов. К выводу “Д” этого выпрямителя и подсоединяется обмотка возбуждения генератора. Схема допускает некоторый разряд аккумуляторной батареи малыми токами по цепи регулятора напряжения, и при длительной стоянке рекомендуется снимать наконечник провода с клеммы “+” аккумуляторной батареи.
В схему на рис 3.6, д, введено подвозбуждение генератора от аккумуляторной батареи через контрольную лампу 8. Небольшой ток, поступающий в обмотку возбуждения через эту лампу от аккумуляторной батареи, достаточен для возбуждения генератора и в то же время не может существенно влиять на разряд аккумуляторной батареи. Обычно параллельно контрольной лампе включают резистор 13, чтобы даже в случае перегорания контрольной лампы генератор мог возбудиться. Контрольная лампа в схеме на рис. 3.6, д является одновременно и элементом контроля, работоспособности генераторной установки.
В схеме применен стабилитрон 12, гасящий, всплески напряжения, опасные для электронной аппаратуры.
С целью контроля работоспособности в схеме рис. 3.6, а введены реле с нормально замкнутыми контактами, через которые получает питание контрольная лампа 8.
Эта лампа загорается, после включения замка зажигания и гаснет после пуска двигателя, т.к. под действием напряжения от генератора реле, обмотка которого подключена к нулевой точке обмотки статора, разрывает свои нормально замкнутые контакты и отключает контрольную лампу 8 от цепи питания.
Если лампа 8 при работающем двигателе горит, значит, генераторная установка неисправна. В некоторых случаях обмотка реле. контрольной лампы б подключается на вывод фазу генератора.
Схема рис. 3.7, е характерна для генераторных установок с номинальным напряжением 28 В.
В этой схеме обмотка возбуждения включена на нулевую точку обмотки статора генератора, т.е. питается напряжением, вдвое, меньшим, чем напряжение генератора.
При этом приблизительно вдвое снижаются и величины, импульсов напряжения, возникающих при работе генераторной установки, что благоприятно сказывается на надежности работы полупроводниковых элементов регулятора напряжения. Резистор 13 служит тем же целям, что и контрольная лампа в схеме рис. 3.6, д, т.е. обеспечивает уверенное возбуждение генератора.
На автомобилях с дизельными двигателями может применяться генераторная установка на два уровня напряжения 14/28 В. Второй уровень 28 В используется для зарядки аккумуляторной батареи, работающей при пуске ДВС. Для, получения второго уровня используется электронный удвоитель напряжения или трансформаторно-выпрямительный блок (ТВБ), как это показано на рис, 3.6, г. В системе на два уровня напряжения регулятор стабилизирует, только первый уровень напряжения 14 В. Второй уровень возникает посредством трансформации и последующего выпрямления ТВБ переменного тока генератора. Коэффициент трансформации трансформатора ТВБ близок к единице.
В некоторых генераторных установках зарубежного и отечественного производства регулятор напряжения поддерживает напряжение не на силовом выводе генератора “+”, а на выводе его дополнительного выпрямителя, как показано на схеме рис.3.6, ж. Схема являемся модификацией схемы рис. 3.6, д, с устранением ее недостатка — разряда аккумуляторной батареи регулятора напряжения при длительной стоянке. Такое исполнение схемы генераторной установки возможно потому, что разница напряжения на клеммах “+”. и Д невелика. На этой же схеме (рис., 3.6, ж) показано дополнительное плечо выпрямителя, выполненное на стабилитронах, которые в нормальном режиме работают, как обычные выпрямительные диоды, а в аварийных предотвращают опасные всплески напряжения. Резистор R, как было показано выше, расширяет диагностические возможности схемы. Этот резистор вообще характерен для генераторных установок фирмы Bosch.
Генераторные установки без дополнительного выпрямителя, но с подводом к регулятору вывода фаз, применение которых, особенно японскими и американскими фирмами, расширяется, выполняются по схеме рис. 3.6, з. В этом случае схема генераторной установки упрощается, но усложняется схема регулятора напряжения, т.к. на него переносятся функции предотвращения разряда аккумуляторной батареи на цепь возбуждения генератора при неработающем двигателе автомобиля и управления лампой контроля работоспособного состояния генераторной установки. На вход регулятора может подаваться напряжение генератора или аккумуляторной батареи (пунктир на рис. 3.6, з), а иногда и оба эти напряжения сразу.
Конечно стабилитрон 12, защищающий от всплесков напряжения дополнительное плечо выпрямителя, а также выполнение выпрямителя на стабилитронах может быть использовано в любой из приведенных схем.
Некоторые фирмы применяют включение контрольной лампы через разделительный диод, а в схемах 3.6, д, ж включение ее идет через контактное реле. В этом случае обмотка реле включается на место контрольной лампы. Если генераторная установка работает в комплексе с датчиком температуры электролита, она имеет дополнительные выводы для его подсоединения.
Генераторы на большие выходные токи могут иметь параллельное включение диодов выпрямителя. Дли защиты цепей генераторной установки применяют предохранители, обычно в цепях контрольной лампы, соединениях регулятора с аккумуляторной батареей, в цепи питания аккумуляторной батареи.
5. Характеристики генераторных установок
Способность генераторной установки обеспечивать электропитанием потребителей электроэнергии на автомобиле во всех режимах его работы характеризует токоскоростная характеристика (ТСХ), т.е. зависимость силы тока, отдаваемого генератором в нагрузку, от частоты вращения его ротора при постоянной величине напряжения на силовых выводах генератора. Вид токоскоростной характеристики генераторных установок легковых автомобилей, построенной В относительных единицах по отношению к номинальной величине силы отдаваемого тока, представлен на рис.3.7. Характеристика демонстрирует существенное достоинство вентильных генераторов — их самозащиту и самоограничение отдаваемого ими тока. Достигнув определенной величины, ток практически не увеличивается с ростом частоты вращения ротора.
Методика определения ТСХ имеет международный стандарт. Характеристика эта определяется при работе генераторной установки в комплекте, с полностью заряженной аккумуляторной батареей с номинальной емкостью, выраженной в Ач, составляющей не менее 50% номинальной силы тока генератора. Характеристика может определяться в холодном и нагретом состоянии генератора. При этом под холодным состоянием понимается такое, при котором температура всех частей и узлов генератора равна температуре окружающей среды, величина которой должна быть (23±5)°С. Температура воздуха определяется в точке на расстоянии 5 см от воздухозаборника генератора. Токоскоростные характеристики могут определяться при номинальном напряжении, т.е. 14 (28) В. Однако снять такие характеристики возможно только с регулятором, специально перестроенным на высокий уровень, поддержания напряжения. Чтобы предотвратить работу регулятора напряжения при снятии токоскоростной характеристики, ее определяют при напряжениях Ud=13,5? 0,1 (27? 0,2)В. Допускается ускоренный метод определения токоскоростной характеристики, требующий специального автоматизированного стенда, при котором генератор прогревается в течение 30 мин при частоте вращения ротора 3000 мин-1, соответствующей этой частоте силе тока и указанном выше напряжении. Время снятия характеристики не должно превышать 30 с при постоянно меняющейся частоте вращения.
Токоскоростная характеристика имеет характерные точки, к которым относятся:
n0 — начальная частота вращения ротора без нагрузки. Поскольку обычно снятие характеристики начинают с тока нагрузки, около 2 А, то эта точка получается экстраполяцией снятой характеристики до пересечения с осью абсцисс.
nrg — минимальная рабочая частота вращения ротора, т.е. частота вращения, примерно соответствующая оборотам холостого хода двигателя. Условно принимается nrg=1500 мин-1 (для высокоскоростных, генераторов — 1800 мин-1).
Сила тока Idg при этой частоте обычно составляет 40-50% номинального тока и во всяком случае должна быть достаточна для обеспечения питанием тех потребителей энергии на автомобиле, от которых зависит безопасность.
nн —номинальная частота вращения poтopa, при которой вырабатывается номинальный ток Idн, т.е. ток, сила которого не должна быть меньше номинальной величины.
nmax — максимальная частота вращения ротора. При этой частоте генератор вырабатывает максимальный ток IMAX, сила которого мало отличается от силы номинального тока. Отечественные изготовители ранее обычно указывали номинальный ток генератора при частоте вращения ротора 5000 мин-1, а также указывали частоту вращения ротора генератора расчетном режиме nр, соответствующему расчетному току генератора Idp, обычно составляющему две трети номинального тока. В расчетном режиме нагрев узлов генератора наибольший. Характеристики определялись .при напряжении 13 или 14 В. В табл. 3.1 приведены характерные точки токоскоростной характеристики некоторых отечественных генераторных установок, в табл.3.2 — некоторых генераторных установок легковых автомобилей основных европейских фирм. Там же указана масса генераторов.
Таблица 1. Основные данные генераторов некоторых отечественных производителей
Генератор |
Автомобили |
Рном, Вт |
Uном, В |
Idном, А |
n0, мин-1, не более |
npm, мин-1, не более |
UdP, В |
Idp, A |
Масса, кг |
|
Г222 63.3701 37.3701 1702.3771 |
ВАЗ 2101 -03 -06 Белаз ВАЗ 2108, 21213 АЗЛК 2141 МАЗ, КамАЗ 5332 |
700 4200 770 1260 |
14 28 14 28 |
42 150 55 45 |
1150 1500 1100 1150 |
2500 2500 2000 2100 |
14 28 13 28 |
30 150 35 30 |
4,2 22,0 4,4 5,2 |
|
Генераторная установка должна самовозбуждаться при частоте вращения ротора ниже числа оборотов холостого хода коленчатого вала двигателя. Конечно, проверка на самовозбуждение должна производится при работе генераторной установки в комплекте с аккумуляторной батареей при включении контрольной лампы в схемах рис. 3.6, д, ж.
Таблица 2. Основные данные генераторов зарубежного производства
Фирма |
Тип |
Ток отдачи, А, при частоте |
Наружный диаметр статора, мм |
Масса без шкифа, кг |
||
1500 мин-1 |
6000мин-1 |
|||||
Bosch Valeo Magneti Marelli Lucas |
30/85А 80A AA125R-45 A127-72 |
30 28 20 25 |
85 80 45 72 |
125 128 125…128 127 |
5,1 4,1 4…4,3 4,3 |
|
Энергетическую способность генератора характеризует его коэффициент полезного действия КПД. Чем выше КПД, тем меньшую мощность отнимает генератор у двигателя при той же полезной отдаче.
Величина КПД зависит от конструкции генератора — толщины пластины пакета статора и способа изоляции их друг от друга, величины сопротивления обмоток, диаметра контактных колец, марки щеток и подшипников и т.п., но главным образом, от мощности генератора: чем генератор мощнее, тем КПД выше. Значения КПД по точкам токоскоростной характеристики представлены на рис. 3.7 для ориентировки. Обычно максимальное значение КПД вентильных автомобильных генераторов не превышает 50 — 60%.
Регуляторную часть генераторной установки характеризует диапазон изменения выходного напряжения при изменении частоты вращения ротора, нагрузки и температуры. Диапазоны изменения напряжения некоторых отечественных генераторных установок представлены в Табл. 3.3. Дробью указан диапазон регуляторов, имеющих переключение настройки. Там же указана величина падения напряжения в выходной цепи регулятора, которая влияет на токоскоростную характеристику.
Таблица 3. Диапозоны изменеия напряжения генераторов отечественного производства
Регулятор напряжения |
Генератор |
Uном, В |
Диапазон стабилизации, В |
Падение напряжения при Iн=3 А, В |
Схема по рис.3.6 |
|
Я112В1 17.3702 21.3702 2712.3702 |
Г222 37.3701 63.3701 1702.3771 |
14 14 28 28 |
13,9-14,3 13,5-14,6 26-28,5 27,2-27,9 |
1,5 1,3 1,8 1,4 |
в д е б |
|
Зарубежные фирмы обычно указывают напряжение настройки регулятора напряжения при холодном состоянии генераторной установки, при частоте вращения ротора 6000 мин-1, нагрузке силой тока в 5 А и работе в комплекте с аккумуляторной батареей, а также коэффициент термокомпенсации, т.е. величину изменения напряжения при изменении температуры окружающей среды на 1°С. С ростом температуры напряжение уменьшается. Для легковых автомобилей, в основном,. предлагаются напряжения настройки регулятора (14,1 ±0,1) В при термокомпенсации (7±1,5) мВ/°С и (14,5±0,1) В при термокомпенсации (10±20) мВ/°С.