Современные технологии в РЭНМ : «Методы борьбы с АСПО в скважинах при добыче нефти» » Мы с АГНИ

Реферат

м в поток добываемой нефти различных ингибиторов. Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, тепловой и химической обработкой продукции скважин.

  1. 1. Состав и структура АСПО

АСПО представляют собой сложную углеводородную смесь, состоящую из парафинов (20-70 % мас.), АСВ (20-40 % мас.), силикагелевой смолы, масел, воды и механических примесей [1].

Парафины — углеводороды метанового ряда от С16 Н34 до С64 Н130 . В пластовых условиях находятся в нефти в растворенном состоянии. В зависимости от содержания парафинов нефти классифицируют на (ГОСТ 912-66):

  • малопарафиновые — менее 1,5 % мас.;
  • парафиновые — от 1,5 до 6 % мас.;
  • высокопарафиновые — более 6 % мас..

Рис. 1 — Асфальтосмолопарафиновые отложения в НКТ

Парафины устойчивы к воздействию различных химических реагентов (кислот, щелочей и др.), легко окисляются на воздухе. Высокомолекулярные парафины — церезины (от С37 Н74 до С53 Н108 ) отличаются более высокой температурой кипения, большей молекулярной массой и плотностью. В состав АСВ входят азот, сера и кислород. АСВ обладают высокой молекулярной массой, не летучи, имеют существенную неоднородность структуры. Содержание смолистых веществ в нефти возрастает в связи с испарением легких компонентов и ее окислением, а также при контакте нефти с водой. Иногда к группе смолистых соединений относят асфальтены. Асфальтены — порошкообразные вещества бурого или коричневого цвета, плотностью более единицы, массовое содержание которых в нефти достигает 5,0 %. В асфальтенах содержится (мас.) 80,0-86,0 % углерода, 7,0-9,0 % водорода, до 9,0 % серы, 1,0-9,0 % кислорода и до 1,5 % азота. Они являются наиболее тугоплавкой и малорастворимой частью отложений тяжелых компонентов нефти. Нефтяные дисперсные системы относят к классу коллоидов, в которых АСВ диспергированы в мальтеновой среде. Очевидно, что физико-химические и технологические свойства нефтей во многом обусловлены межмолекулярным взаимодействием в системах «асфальтены-смолы» и «мальтены-смолы-асфальтены». Как правило, строение смол и асфальтенов рассматривают в виде «сэндвичевых» структур, которые представляют собой параллельные нафтеноароматические слои, связанные между собой за счет формирования комплексов с переносом зарядов. В данном случае имеет место некоторое завышение степени упорядоченности асфальтенов, так как они рассматриваются как идеальные кристаллы, хотя квазикристаллическая часть составляет малую долю асфальтенового вещества (не превышает 3-4 % мас.).

51 стр., 25012 слов

Проект установки первичной переработки Тенгинской нефти

... технологией их переработки Нефти различных месторождений даже в пределах одного месторождения значительно отличаются друг от друга по химическому составу, а также по содержанию смол, серы и парафина. В разное ... всех дистиллятных топливах из данной нефти содержание серы выше установленных пределов, то эту нефть относят ко II классу, т. е. к сернистым нефтям. Нефти, содержащие от 0,51 до 2,0 ...

Принято считать, что смолы и асфальтены являются парамагнитными жидкостями, а нефти, нефтепродукты ? термодинамически стабильными парамагнитными растворами. Асфальтены представляют собой комбинацию многих ассоциатов, зависящую от степени гомолитической диссоциации диамагнитных частиц. Изменение концентрации парамагнитных смол и асфальтенов в нефти связано с изменением строения комбинаций ассоциатов.

Смолы и асфальтены обладают следующими особенностями:

1. Химические и физико-химические процессы с участием АСВ носят коллективный характер. Асфальтены не являются индивидуальными компонентами, а образуют ассоциативные комбинации, в центре которых локализованы стабильные свободные радикалы. 2. Возникновение сольватной оболочки из диамагнетиков является непременным условием существования парамагнитных частиц в растворах. Образование сольватных оболочек ослабляет силы притяжения парамагнитных молекул и препятствует их рекомбинации в результате теплового движения. 3. Смолы состоят из диамагнитных молекул, часть из которых способна переходить в возбужденное триплетное состояние или подвергаться гомолизу. Поэтому смолы являются потенциальным источником асфальтенов. 4. Свойства АСВ определяются не элементным составом, а, прежде всего степенью межмолекулярного взаимодействия компонентов. В пределах одного нефтедобывающего региона и даже отдельного месторождения компонентный состав АСПО изменяется в широких пределах. Знание состава АСПО имеет практическое значение для определения оптимальных методов борьбы с ними, в частности, для выбора химических реагентов. Этот выбор часто осуществляют исходя из типа АСПО (табл. 1) [3].

Для исследования состава и структуры АСПО используют экстракционный, хроматографический, термический, спектральный, электрохимический и другие методы.

Таблица 1 Классификация АСПО

Группа АСПО

Подгруппа АСПО

Отношение содержания парафинов (П) к сумме смол (С) и асфальтенов (А)

Содержание

механических

примесей, %

Асфальтеновый (А)

А 1

А 2

А 3

0,9

0,9

0,9

0,2

0,2-0,5

0,5

Смешанный (С)

С 1

С 2

С 3

0,9-1,1

0,9-1,1

0,9-1,1

0,2

0,2-0,5

0,5

Парафиновый (П)

П 1

П 2

П 3

1,1

1,1

1,1

0,2

0,2-0,5

0,5

  1. 2. Причины и условия асфальтосмолопарафиновых отложений

Известны две стадии образования и роста АСПО. Первой стадией является зарождение центров кристаллизации и рост кристаллов парафина непосредственно на контактирующей с нефтью поверхности. На второй стадии происходит осаждение на покрытую парафином поверхность более крупных кристаллов.

На образование АСПО оказывают существенное влияние:

  • снижение давления на забое скважины и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;
    • интенсивное газовыделение;
    • уменьшение температуры в пласте и стволе скважины;
    • изменение скорости движения газожидкостной смеси и отдельных ее компонентов;
    • состав углеводородов в каждой фазе смеси;
    • соотношение объема фаз;
    • состояние поверхности труб.

Интенсивность образования АСПО зависит от преобладания одного или нескольких факторов, которые могут изменяться по времени и глубине, поэтому количество и характер отложений не являются постоянными. Влияние давления на забое и в стволе скважины. В случае, когда забойное давление меньше давления насыщения нефти газом, равновесное состояние системы нарушается, вследствие чего увеличивается объем газовой фазы, а жидкая фаза становится нестабильной. Это приводит к выделению из нее парафинов. Равновесное состояние нарушается в пласте, и выпадение парафина возможно как в пласте, так и в скважине, начиная от забоя. При насосном способе эксплуатации давление на приеме насоса может быть меньше, чем давление насыщения нефти газом. Это может привести к выпадению парафина в приемной части насоса и на стенках эксплуатационной колонны. В колонне НКТ, выше насоса, можно выделить две зоны. Первая — непосредственно над насосом: здесь давление резко возрастает и становится больше давления насыщения. Вероятность отложения в этой зоне минимальна. Вторая — зона снижения давления до давления насыщения и ниже, где начинается интенсивное выделение парафина. В фонтанных скважинах при поддержании давления у башмака равным давлению насыщения, выпадение парафина следует ожидать в колонне НКТ. Как показывает практика [1], основными объектами, в которых наблюдается образование отложений парафина, являются скважинные насосы, НКТ, выкидные линии от скважин, резервуары промысловых сборных пунктов. Наиболее интенсивно парафин откладывается на внутренней поверхности подъемных труб скважин. Промысловые исследования в условиях ОАО «Оренбургнефть» показали [1], что характер распределения парафиновых отложений в трубах различного диаметра примерно одинаков. Толщина отложений постепенно увеличивается от места начала их образования на глубине 500-900 м и достигает максимума на глубине 50-200 м от устья скважины, затем уменьшается до толщины 1-2 мм в области устья (рис. 2).

Анализ состава АСПО, отобранных на различных глубинах скважин, показал, что на глубине более 1000 м содержится больше АСВ, чем парафинов [8].

Механические примеси на таких глубинах практически не участвуют в формировании отложений (их содержание не превышает 4-5 % мас.).

С уменьшением глубины наблюдаются снижение содержания асфальто-смолистых веществ в АСПО, а также увеличение количества механических примесей и твердых парафинов (рис. 3).

Чем ближе к устью скважины, тем в составе АСПО больше церезинов, и, соответственно, тем выше структурная прочность отложений.

Рис. 2 — Отложение АСПО по глубине скважины

Рис. 3 — Отложение АСВ и парафинов по глубине скважины

Нет единого мнения об образовании АСПО при высокой обводненности продукции скважин. Любопытные данные получены при анализе 344 скважин на поздней стадии разработки месторождений ОАО «Татнефть» [7].

В этих условиях наиболее часто АСПО образуются в скважинах, дебиты которых меньше 20 т/сут., причем преобладают дебиты до 5 т/сут по жидкости. Критическим дебитом, когда АСПО в скважине незначительно, является дебит свыше 35 т/сут. АСПО образуются во многих скважинах с низкой обводненностью нефти, доля которых от общего количества скважин составляет 32 %. Второе место по частоте образования АСПО занимают скважины, имеющие обводненность от 50 до 90 %. Характерной особенностью формирования АСПО в таких скважинах является их образование не только в НКТ, но и в насосном оборудовании (более 50 % ремонтов).

АСПО в колонне НКТ образуются в основном в скважинах с низкой и высокой (от 60 до 80 %) обводненностью. Большинство таких скважин (95 %) оборудовано штанговыми насосами, из них 54 % имеют диаметр плунжера 44 мм, а 31 % — 32 мм. Около 47 % скважин с АСПО в насосах имеют обводненность продукции выше 60 %, в то время как всего 28 % таких скважин — низкую обводненность. Влияние температуры в пласте и в стволе скважины. Нефть является сложной по химическому составу смесью компонентов, которые, в зависимости от строения и внешних условий, могут находиться в разных агрегатных состояниях. Снижение температуры вызывает изменение агрегатного состояния компонентов, приводящее к образованию центров кристаллизации и росту кристаллов парафина. Характер распределения температуры по стволу скважины существенно влияет на парафинообразование и зависит от:

  • интенсивности передачи тепла от движущейся по стволу скважины жидкости окружающим породам. Теплопередача зависит от градиента температур жидкости и окружающих скважину пород и теплопроводности кольцевого пространства между подъемными трубами и эксплуатационной колонной;
  • расширения газожидкостной смеси и ее охлаждения, вызванного работой газа по подъему жидкости.

Влияние газовыделения:

Лабораторные исследования показали [1], что на интенсивность образования парафиноотложений оказывает влияние процесс выделения и поведения газовых пузырьков в потоке смеси. Известно, что газовые пузырьки обладают способностью флотировать взвешенные частицы парафина. При контакте пузырька с поверхностью трубы частицы парафина соприкасаются со стенкой и откладываются на ней. В дальнейшем процесс отложения парафина нарастает вследствие его гидрофобности. На стенке трубы образуется слой из кристаллов парафина и пузырьков газа. Чем менее газонасыщен этот слой, тем большую плотность он имеет. Поэтому более плотные отложения образуются в нижней части подъемных труб, где пузырьки газа малы и обладают большей силой прилипания к кристаллам парафина и стенкам трубы.

  1. Влияние скорости движения газожидкостной смеси. Интенсивность образования АСПО во многом зависит от скорости течения жидкости. При ламинарном характере течения, то есть низких скоростях потока, формирование АСПО происходит достаточно медленно. С ростом скорости (при турбулизации потока) интенсивность отложений вначале возрастает. Дальнейший рост скорости движения газожидкостной смеси ведет к уменьшению интенсивности отложения АСПО: большая скорость движения смеси позволяет удерживать кристаллы парафина во взвешенном состоянии и выносить их из скважины. Кроме того, движущийся поток срывает часть отложений со стенок труб, чем объясняется резкое уменьшение отложений в интервале 0-50 м от устья скважины. При больших скоростях движения поток смеси охлаждается медленнее, чем при малых, что также замедляет процесс образования АСПО [5].
  2. Влияние шероховатости стенок труб. Состояние поверхности труб влияет на образование отложений. Микронеровности являются очагами вихреобразования, разрыва слоя, замедлителями скорости движения жидкости у стенки трубы. Это служит причиной образования центров кристаллизации отложений, прилипания кристаллов парафина к поверхности труб, блокирования их движения между выступами и впадинами поверхности. В случае, когда значение шероховатости поверхности труб соизмеримо с размером кристаллов парафина, либо меньше его, процесс образования отложений затруднен.
  3. Влияние электризации. Процесс образования АСПО носит адсорбционный характер. Адсорбционные процессы сопровождаются возникновением двойного электрического слоя на поверхности контакта парафина с газонефтяным потоком. При механическом нарушении равновесного состояния данного слоя на поверхности трубы или слоя парафина появляются некомпенсированные заряды статического электричества, то есть происходит электризация как поверхности трубы, так и поверхности кристаллов парафина, что усиливает адгезию парафина к металлу [10].

3. Методы борьбы с АСПО

Химические методы

  • процессом разрушения устойчивых нефтяных эмульсий;

  • защитой нефтепромыслового оборудования от коррозии;

  • защитой от солеотложений;

  • процессом формирования оптимальных структур газожидкостного потока.

Разработан достаточно широкий ассортимент химических реагентов для борьбы с АСПО. В настоящее время применяются следующие марки реагентов:

  • бутилбензольная фракция (бутиленбензол, изопропилбензол, полиалкилбензолы).

    Предложен к использованию СевКавНИПИнефть;

  • толуольная фракция (толуол, изопентан, н-пентан, изопрен);

  • СНПХ-7р-1 — смесь парафиновых углеводородов нормального и изостроения, а также ароматических углеводородов (ОАО «НИИнефтехим», г. Казань);

  • СНПХ-7р-2 — углеводородная композиция, состоящая их легкой пиролизной смолы и гексановой фракции (ОАО «НИИнефтехим», г. Казань);

  • ХПП-003, 004, 007 (ЗАО «Когалымский завод химреагентов», г. Когалым);

  • МЛ-72 — смесь синтетических ПАВ;

  • реагенты типа СНПХ-7200, СНПХ-7400 — сложные смеси оксиалкилированных ПАВ и ароматических углеводородов (ОАО «НИИнефтехим», г. Казань);

  • реагент ИКБ-4, оказывающий комплексное воздействие на АСПО и коррозию металла труб (ИНХП, г. Уфа);

  • ИНПАР (Опытный завод «Нефтехим», г. Уфа);

  • СЭВА-28 — сополимер этилена с винилацетатом (ВНИИНП и ВНИИТнефть, г. Москва) [5].

Рис. 4 — Классификация методов борьбы с АСПО

Методы

  • горячей нефти или воды в качестве теплоносителя;

  • острого пара;

  • электропечей наземного и скважинного исполнения;

  • электродепарафинизаторов (индукционных подогревателей), осуществляющих подогрев нефти в скважине;

Механические методы

По конструкции и принципу действия скребки подразделяют на:

  • пластинчатые со штанговращателем, имеющие две режущие пластины, способные очищать АСПО только при вращении. Для этого используют штанговращатели, подвешенные к головке балансира станка-качалки. Вращение колонны штанг и, следовательно, скребков происходит только при движении вниз. Таким путем скребок срезает АСПО с поверхности НКТ;

  • спиральные, возвратно-поступательного действия;

метод

Заключение

Выбор того или иного метода борьбы с АСПО основывается на тщательном изучении свойств добываемой продукции, её поведении в пластовых условиях, скважине и наземном оборудовании. Выбор конкретных химических реагентов базируется на точном знании состава АСПО, механизма его формирования и исследовании выбранного химического реагента (композиции реагентов) в условиях лаборатории на применимость к конкретному составу отложений. Проанализировав затраты на осуществление всех применяемых методов борьбы с АСПО можно сделать следующие выводы:

  • рекомендации для того или иного метода борьбы с АСПО должны осуществляться индивидуально для каждой конкретной скважины, используя сведения о её эксплуатации и анализируя затраты на ведение профилактических работ по АСПО;
  • приоритетным направлением в борьбе с АСПО должно быть применение наиболее экономичных методов, не требующих больших материальных и трудовых затрат. Из всех рассмотренных в работе методов и способов борьбы с АСПО более широкое распространение получил метод использования НКТ с защитным покрытием — гранулированным стеклом. Длительный опыт эксплуатации таких труб даёт хорошие результаты, особенно на скважинах, эксплуатируемых электропогружными установками. Наиболее эффективен химический метод предотвращения отложения парафина с применением ингибиторов в сочетании с промывкой нефтедистилятной смесью.

Список литературы

[Электронный ресурс]//URL: https://inzhpro.ru/referat/fizicheskie-metodyi-udaleniya-serovodoroda-iz-nefti/

1. Персиянцев М.Н. Добыча нефти в осложненных условиях. — М.: ООО «Недра-Бизнесцентр», 2000. — 653 с.: ил.

2. Доломатов М.Ю., Телин А.Г. и др. Физико-химические основы направленного подбора растворителей асфальтосмолистых веществ // Отчет центрального научно-исследовательского института ЦНИИТЭнефтехим, 1990 г.- 35 с.

3. Ибрагимов Г.З., Сорокин В.А., Хисамутдинов Н.И. Химические реагенты для добычи нефти: Справочник рабочего. — М.: Недра, 1986.- 240 с.

4. Голонский П.П. Борьба с парафином при добыче нефти. — М.: Гостоптехиздат, 1960. — 88 с.

5. Люшин С.В., Репин Н.Н. О влиянии скорости потока на интенсивность отложения парафинов в трубах // Сб. борьба с отложениями парафина. — М.: Недра, 1965. — 340 с.

6. Тронов В.П. Механизм образования смоло-парафиновых отложений и борьба с ними. — М.: Недра, 1970. — 192 с.

7. Коршак А.А., Шаммазов А.М. Основы нефтегазового дела. Учебник для ВУЗов: — Уфа.: ООО «ДизайнПолиграфСервис», 2001 — 544 с.: ил.

8. Нагимов Н.М., Ишкаев Р.К., Шарифуллин А.В., Козин В.Г. Эффективность воздействия на асфальтосмолопарафиновые отложения различных углеводородных композитов // Нефть России. Техника и технология добычи нефти. — 2002. — N 2 — с. 68-70.