м в поток добываемой нефти различных ингибиторов. Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, тепловой и химической обработкой продукции скважин.
- 1. Состав и структура АСПО
АСПО представляют собой сложную углеводородную смесь, состоящую из парафинов (20-70 % мас.), АСВ (20-40 % мас.), силикагелевой смолы, масел, воды и механических примесей [1].
Парафины — углеводороды метанового ряда от С16 Н34 до С64 Н130 . В пластовых условиях находятся в нефти в растворенном состоянии. В зависимости от содержания парафинов нефти классифицируют на (ГОСТ 912-66):
- малопарафиновые — менее 1,5 % мас.;
- парафиновые — от 1,5 до 6 % мас.;
- высокопарафиновые — более 6 % мас..
Рис. 1 — Асфальтосмолопарафиновые отложения в НКТ
Парафины устойчивы к воздействию различных химических реагентов (кислот, щелочей и др.), легко окисляются на воздухе. Высокомолекулярные парафины — церезины (от С37 Н74 до С53 Н108 ) отличаются более высокой температурой кипения, большей молекулярной массой и плотностью. В состав АСВ входят азот, сера и кислород. АСВ обладают высокой молекулярной массой, не летучи, имеют существенную неоднородность структуры. Содержание смолистых веществ в нефти возрастает в связи с испарением легких компонентов и ее окислением, а также при контакте нефти с водой. Иногда к группе смолистых соединений относят асфальтены. Асфальтены — порошкообразные вещества бурого или коричневого цвета, плотностью более единицы, массовое содержание которых в нефти достигает 5,0 %. В асфальтенах содержится (мас.) 80,0-86,0 % углерода, 7,0-9,0 % водорода, до 9,0 % серы, 1,0-9,0 % кислорода и до 1,5 % азота. Они являются наиболее тугоплавкой и малорастворимой частью отложений тяжелых компонентов нефти. Нефтяные дисперсные системы относят к классу коллоидов, в которых АСВ диспергированы в мальтеновой среде. Очевидно, что физико-химические и технологические свойства нефтей во многом обусловлены межмолекулярным взаимодействием в системах «асфальтены-смолы» и «мальтены-смолы-асфальтены». Как правило, строение смол и асфальтенов рассматривают в виде «сэндвичевых» структур, которые представляют собой параллельные нафтеноароматические слои, связанные между собой за счет формирования комплексов с переносом зарядов. В данном случае имеет место некоторое завышение степени упорядоченности асфальтенов, так как они рассматриваются как идеальные кристаллы, хотя квазикристаллическая часть составляет малую долю асфальтенового вещества (не превышает 3-4 % мас.).
Проект установки первичной переработки Тенгинской нефти
... технологией их переработки Нефти различных месторождений даже в пределах одного месторождения значительно отличаются друг от друга по химическому составу, а также по содержанию смол, серы и парафина. В разное ... всех дистиллятных топливах из данной нефти содержание серы выше установленных пределов, то эту нефть относят ко II классу, т. е. к сернистым нефтям. Нефти, содержащие от 0,51 до 2,0 ...
Принято считать, что смолы и асфальтены являются парамагнитными жидкостями, а нефти, нефтепродукты ? термодинамически стабильными парамагнитными растворами. Асфальтены представляют собой комбинацию многих ассоциатов, зависящую от степени гомолитической диссоциации диамагнитных частиц. Изменение концентрации парамагнитных смол и асфальтенов в нефти связано с изменением строения комбинаций ассоциатов.
Смолы и асфальтены обладают следующими особенностями:
1. Химические и физико-химические процессы с участием АСВ носят коллективный характер. Асфальтены не являются индивидуальными компонентами, а образуют ассоциативные комбинации, в центре которых локализованы стабильные свободные радикалы. 2. Возникновение сольватной оболочки из диамагнетиков является непременным условием существования парамагнитных частиц в растворах. Образование сольватных оболочек ослабляет силы притяжения парамагнитных молекул и препятствует их рекомбинации в результате теплового движения. 3. Смолы состоят из диамагнитных молекул, часть из которых способна переходить в возбужденное триплетное состояние или подвергаться гомолизу. Поэтому смолы являются потенциальным источником асфальтенов. 4. Свойства АСВ определяются не элементным составом, а, прежде всего степенью межмолекулярного взаимодействия компонентов. В пределах одного нефтедобывающего региона и даже отдельного месторождения компонентный состав АСПО изменяется в широких пределах. Знание состава АСПО имеет практическое значение для определения оптимальных методов борьбы с ними, в частности, для выбора химических реагентов. Этот выбор часто осуществляют исходя из типа АСПО (табл. 1) [3].
Для исследования состава и структуры АСПО используют экстракционный, хроматографический, термический, спектральный, электрохимический и другие методы.
Таблица 1 Классификация АСПО
Группа АСПО |
Подгруппа АСПО |
Отношение содержания парафинов (П) к сумме смол (С) и асфальтенов (А) |
Содержание механических примесей, % |
Асфальтеновый (А) |
А 1 А 2 А 3 |
0,9 0,9 0,9 |
0,2 0,2-0,5 0,5 |
Смешанный (С) |
С 1 С 2 С 3 |
0,9-1,1 0,9-1,1 0,9-1,1 |
0,2 0,2-0,5 0,5 |
Парафиновый (П) |
П 1 П 2 П 3 |
1,1 1,1 1,1 |
0,2 0,2-0,5 0,5 |
- 2. Причины и условия асфальтосмолопарафиновых отложений
Известны две стадии образования и роста АСПО. Первой стадией является зарождение центров кристаллизации и рост кристаллов парафина непосредственно на контактирующей с нефтью поверхности. На второй стадии происходит осаждение на покрытую парафином поверхность более крупных кристаллов.
На образование АСПО оказывают существенное влияние:
- снижение давления на забое скважины и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;
- интенсивное газовыделение;
- уменьшение температуры в пласте и стволе скважины;
- изменение скорости движения газожидкостной смеси и отдельных ее компонентов;
- состав углеводородов в каждой фазе смеси;
- соотношение объема фаз;
- состояние поверхности труб.
Интенсивность образования АСПО зависит от преобладания одного или нескольких факторов, которые могут изменяться по времени и глубине, поэтому количество и характер отложений не являются постоянными. Влияние давления на забое и в стволе скважины. В случае, когда забойное давление меньше давления насыщения нефти газом, равновесное состояние системы нарушается, вследствие чего увеличивается объем газовой фазы, а жидкая фаза становится нестабильной. Это приводит к выделению из нее парафинов. Равновесное состояние нарушается в пласте, и выпадение парафина возможно как в пласте, так и в скважине, начиная от забоя. При насосном способе эксплуатации давление на приеме насоса может быть меньше, чем давление насыщения нефти газом. Это может привести к выпадению парафина в приемной части насоса и на стенках эксплуатационной колонны. В колонне НКТ, выше насоса, можно выделить две зоны. Первая — непосредственно над насосом: здесь давление резко возрастает и становится больше давления насыщения. Вероятность отложения в этой зоне минимальна. Вторая — зона снижения давления до давления насыщения и ниже, где начинается интенсивное выделение парафина. В фонтанных скважинах при поддержании давления у башмака равным давлению насыщения, выпадение парафина следует ожидать в колонне НКТ. Как показывает практика [1], основными объектами, в которых наблюдается образование отложений парафина, являются скважинные насосы, НКТ, выкидные линии от скважин, резервуары промысловых сборных пунктов. Наиболее интенсивно парафин откладывается на внутренней поверхности подъемных труб скважин. Промысловые исследования в условиях ОАО «Оренбургнефть» показали [1], что характер распределения парафиновых отложений в трубах различного диаметра примерно одинаков. Толщина отложений постепенно увеличивается от места начала их образования на глубине 500-900 м и достигает максимума на глубине 50-200 м от устья скважины, затем уменьшается до толщины 1-2 мм в области устья (рис. 2).
Анализ состава АСПО, отобранных на различных глубинах скважин, показал, что на глубине более 1000 м содержится больше АСВ, чем парафинов [8].
Механические примеси на таких глубинах практически не участвуют в формировании отложений (их содержание не превышает 4-5 % мас.).
С уменьшением глубины наблюдаются снижение содержания асфальто-смолистых веществ в АСПО, а также увеличение количества механических примесей и твердых парафинов (рис. 3).
Чем ближе к устью скважины, тем в составе АСПО больше церезинов, и, соответственно, тем выше структурная прочность отложений.
Рис. 2 — Отложение АСПО по глубине скважины
Рис. 3 — Отложение АСВ и парафинов по глубине скважины
Нет единого мнения об образовании АСПО при высокой обводненности продукции скважин. Любопытные данные получены при анализе 344 скважин на поздней стадии разработки месторождений ОАО «Татнефть» [7].
В этих условиях наиболее часто АСПО образуются в скважинах, дебиты которых меньше 20 т/сут., причем преобладают дебиты до 5 т/сут по жидкости. Критическим дебитом, когда АСПО в скважине незначительно, является дебит свыше 35 т/сут. АСПО образуются во многих скважинах с низкой обводненностью нефти, доля которых от общего количества скважин составляет 32 %. Второе место по частоте образования АСПО занимают скважины, имеющие обводненность от 50 до 90 %. Характерной особенностью формирования АСПО в таких скважинах является их образование не только в НКТ, но и в насосном оборудовании (более 50 % ремонтов).
АСПО в колонне НКТ образуются в основном в скважинах с низкой и высокой (от 60 до 80 %) обводненностью. Большинство таких скважин (95 %) оборудовано штанговыми насосами, из них 54 % имеют диаметр плунжера 44 мм, а 31 % — 32 мм. Около 47 % скважин с АСПО в насосах имеют обводненность продукции выше 60 %, в то время как всего 28 % таких скважин — низкую обводненность. Влияние температуры в пласте и в стволе скважины. Нефть является сложной по химическому составу смесью компонентов, которые, в зависимости от строения и внешних условий, могут находиться в разных агрегатных состояниях. Снижение температуры вызывает изменение агрегатного состояния компонентов, приводящее к образованию центров кристаллизации и росту кристаллов парафина. Характер распределения температуры по стволу скважины существенно влияет на парафинообразование и зависит от:
- интенсивности передачи тепла от движущейся по стволу скважины жидкости окружающим породам. Теплопередача зависит от градиента температур жидкости и окружающих скважину пород и теплопроводности кольцевого пространства между подъемными трубами и эксплуатационной колонной;
- расширения газожидкостной смеси и ее охлаждения, вызванного работой газа по подъему жидкости.
Влияние газовыделения:
Лабораторные исследования показали [1], что на интенсивность образования парафиноотложений оказывает влияние процесс выделения и поведения газовых пузырьков в потоке смеси. Известно, что газовые пузырьки обладают способностью флотировать взвешенные частицы парафина. При контакте пузырька с поверхностью трубы частицы парафина соприкасаются со стенкой и откладываются на ней. В дальнейшем процесс отложения парафина нарастает вследствие его гидрофобности. На стенке трубы образуется слой из кристаллов парафина и пузырьков газа. Чем менее газонасыщен этот слой, тем большую плотность он имеет. Поэтому более плотные отложения образуются в нижней части подъемных труб, где пузырьки газа малы и обладают большей силой прилипания к кристаллам парафина и стенкам трубы.
- Влияние скорости движения газожидкостной смеси. Интенсивность образования АСПО во многом зависит от скорости течения жидкости. При ламинарном характере течения, то есть низких скоростях потока, формирование АСПО происходит достаточно медленно. С ростом скорости (при турбулизации потока) интенсивность отложений вначале возрастает. Дальнейший рост скорости движения газожидкостной смеси ведет к уменьшению интенсивности отложения АСПО: большая скорость движения смеси позволяет удерживать кристаллы парафина во взвешенном состоянии и выносить их из скважины. Кроме того, движущийся поток срывает часть отложений со стенок труб, чем объясняется резкое уменьшение отложений в интервале 0-50 м от устья скважины. При больших скоростях движения поток смеси охлаждается медленнее, чем при малых, что также замедляет процесс образования АСПО [5].
- Влияние шероховатости стенок труб. Состояние поверхности труб влияет на образование отложений. Микронеровности являются очагами вихреобразования, разрыва слоя, замедлителями скорости движения жидкости у стенки трубы. Это служит причиной образования центров кристаллизации отложений, прилипания кристаллов парафина к поверхности труб, блокирования их движения между выступами и впадинами поверхности. В случае, когда значение шероховатости поверхности труб соизмеримо с размером кристаллов парафина, либо меньше его, процесс образования отложений затруднен.
- Влияние электризации. Процесс образования АСПО носит адсорбционный характер. Адсорбционные процессы сопровождаются возникновением двойного электрического слоя на поверхности контакта парафина с газонефтяным потоком. При механическом нарушении равновесного состояния данного слоя на поверхности трубы или слоя парафина появляются некомпенсированные заряды статического электричества, то есть происходит электризация как поверхности трубы, так и поверхности кристаллов парафина, что усиливает адгезию парафина к металлу [10].
3. Методы борьбы с АСПО
Химические методы
- процессом разрушения устойчивых нефтяных эмульсий;
- защитой нефтепромыслового оборудования от коррозии;
- защитой от солеотложений;
- процессом формирования оптимальных структур газожидкостного потока.
Разработан достаточно широкий ассортимент химических реагентов для борьбы с АСПО. В настоящее время применяются следующие марки реагентов:
- бутилбензольная фракция (бутиленбензол, изопропилбензол, полиалкилбензолы).
Предложен к использованию СевКавНИПИнефть;
- толуольная фракция (толуол, изопентан, н-пентан, изопрен);
- СНПХ-7р-1 — смесь парафиновых углеводородов нормального и изостроения, а также ароматических углеводородов (ОАО «НИИнефтехим», г. Казань);
- СНПХ-7р-2 — углеводородная композиция, состоящая их легкой пиролизной смолы и гексановой фракции (ОАО «НИИнефтехим», г. Казань);
- ХПП-003, 004, 007 (ЗАО «Когалымский завод химреагентов», г. Когалым);
- МЛ-72 — смесь синтетических ПАВ;
- реагенты типа СНПХ-7200, СНПХ-7400 — сложные смеси оксиалкилированных ПАВ и ароматических углеводородов (ОАО «НИИнефтехим», г. Казань);
- реагент ИКБ-4, оказывающий комплексное воздействие на АСПО и коррозию металла труб (ИНХП, г. Уфа);
- ИНПАР (Опытный завод «Нефтехим», г. Уфа);
- СЭВА-28 — сополимер этилена с винилацетатом (ВНИИНП и ВНИИТнефть, г. Москва) [5].
Рис. 4 — Классификация методов борьбы с АСПО
Методы
- горячей нефти или воды в качестве теплоносителя;
- острого пара;
- электропечей наземного и скважинного исполнения;
- электродепарафинизаторов (индукционных подогревателей), осуществляющих подогрев нефти в скважине;
Механические методы
По конструкции и принципу действия скребки подразделяют на:
- пластинчатые со штанговращателем, имеющие две режущие пластины, способные очищать АСПО только при вращении. Для этого используют штанговращатели, подвешенные к головке балансира станка-качалки. Вращение колонны штанг и, следовательно, скребков происходит только при движении вниз. Таким путем скребок срезает АСПО с поверхности НКТ;
- спиральные, возвратно-поступательного действия;
метод
Заключение
Выбор того или иного метода борьбы с АСПО основывается на тщательном изучении свойств добываемой продукции, её поведении в пластовых условиях, скважине и наземном оборудовании. Выбор конкретных химических реагентов базируется на точном знании состава АСПО, механизма его формирования и исследовании выбранного химического реагента (композиции реагентов) в условиях лаборатории на применимость к конкретному составу отложений. Проанализировав затраты на осуществление всех применяемых методов борьбы с АСПО можно сделать следующие выводы:
- рекомендации для того или иного метода борьбы с АСПО должны осуществляться индивидуально для каждой конкретной скважины, используя сведения о её эксплуатации и анализируя затраты на ведение профилактических работ по АСПО;
- приоритетным направлением в борьбе с АСПО должно быть применение наиболее экономичных методов, не требующих больших материальных и трудовых затрат. Из всех рассмотренных в работе методов и способов борьбы с АСПО более широкое распространение получил метод использования НКТ с защитным покрытием — гранулированным стеклом. Длительный опыт эксплуатации таких труб даёт хорошие результаты, особенно на скважинах, эксплуатируемых электропогружными установками. Наиболее эффективен химический метод предотвращения отложения парафина с применением ингибиторов в сочетании с промывкой нефтедистилятной смесью.
Список литературы
[Электронный ресурс]//URL: https://inzhpro.ru/referat/fizicheskie-metodyi-udaleniya-serovodoroda-iz-nefti/
1. Персиянцев М.Н. Добыча нефти в осложненных условиях. — М.: ООО «Недра-Бизнесцентр», 2000. — 653 с.: ил.
2. Доломатов М.Ю., Телин А.Г. и др. Физико-химические основы направленного подбора растворителей асфальтосмолистых веществ // Отчет центрального научно-исследовательского института ЦНИИТЭнефтехим, 1990 г.- 35 с.
3. Ибрагимов Г.З., Сорокин В.А., Хисамутдинов Н.И. Химические реагенты для добычи нефти: Справочник рабочего. — М.: Недра, 1986.- 240 с.
4. Голонский П.П. Борьба с парафином при добыче нефти. — М.: Гостоптехиздат, 1960. — 88 с.
5. Люшин С.В., Репин Н.Н. О влиянии скорости потока на интенсивность отложения парафинов в трубах // Сб. борьба с отложениями парафина. — М.: Недра, 1965. — 340 с.
6. Тронов В.П. Механизм образования смоло-парафиновых отложений и борьба с ними. — М.: Недра, 1970. — 192 с.
7. Коршак А.А., Шаммазов А.М. Основы нефтегазового дела. Учебник для ВУЗов: — Уфа.: ООО «ДизайнПолиграфСервис», 2001 — 544 с.: ил.
8. Нагимов Н.М., Ишкаев Р.К., Шарифуллин А.В., Козин В.Г. Эффективность воздействия на асфальтосмолопарафиновые отложения различных углеводородных композитов // Нефть России. Техника и технология добычи нефти. — 2002. — N 2 — с. 68-70.