Как уже говорилось, свет, проходя через трехгранную призму, преломляется и при выходе из призмы отклоняется от своего первоначального направления к основанию призмы. Величина отклонения луча зависит от показателя преломления вещества призмы, и, как показывают опыты, показатель преломления зависит от частоты света. Зависимость показателя преломления вещества от частоты (длины волн) света называется дисперсией.О чень просто наблюдать явление дисперсии при пропускании белого света через призму (рис. 102).
При выходе из призмы белый свет разлагается на семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Меньше всех отклоняется красный свет, больше — фиолетовый. Это говорит о том, что стекло имеет для фиолетового света наибольший показатель преломления, а для красного — наименьший. Свет с разными длинами волн распространяется в среде с разными скоростями: фиолетовый с наименьшей, красный — наибольшей, так как n= c/v ,
В результате прохождения света через прозрачную призму получается упорядоченное расположение монохроматических электромагнитных волн оптического диапазона — спектр.
Все спектры делятся на спектры испускания и спектры поглощения. Спектр испускания создается светящимися телами. Если на пути лучей, падающих на призму, поместить холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии.
При этом получим спектр поглощения газа. Немецкий физик Г. Кирхгоф (1824-1887) открыл закон, согласно которому спектральный состав света, который излучается телами в горячем состоянии, поглощается ими в холодном состоянии (атомы данного элемента поглощают те длины волн, которые излучают при высокой температуре).
Спектры испускания делятся на сплошные, линейчатые и полосатые. Сплошной спектр дают раскаленные твердые и жидкие тела. Линейчатый спектр — это совокупность определенных спектральных линий (на черном фоне).
Такой спектр дают возбужденные газы, находящиеся в атомарном состоянии. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Полосатый спектр представляет собой отдельные спектральные полосы, разделенные темными промежутками. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.
Свет. Основные светотехнические величины и единицы
... волны, их свойства различны и поэтому различают: волны на поверхности жидкости; – упругие волны (звук, сейсмические волны); объёмные волны (распространяющиеся в толще среды); электромагнитные волны (радиоволны, свет, рентгеновские лучи); гравитационные волны; волны ... переноса энергии, а абсолютная величина равна количеству энергии, переносимой волной за единицу времени через единичную площадку, ...
Дифракция Света
Дифракция света- отклонение световых волн от прямолинейного распространения, огибание встречающихся препятствий.
Качественно явление дифракции объясняется на основе принципа Гюйгенса-Френеля. Волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат интерференции.
На рис. 105 изображена плоская световая волна, падающая на непрозрачный экран с отверстием. За экраном фронт результирующей волны (огибающая всех вторичных волн) искривляется, в результате чего свет отклоняется от первоначального направления и попадает в область геометрической тени.
Законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны:
Дифракция происходит в том случае, когда размеры препятствий соизмеримы с длиной волны: L ~ Л. Дифракционная картина, полученная на экране, расположенном за различными преградами, представляет собой результат интерференции: чередование светлых и темных полос (для монохроматического света) и разноцветных полос (для белого света).
Дифракционная решетка — оптический прибор, представляющий собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Число штрихов у хороших дифракционных решеток доходит до нескольких тысяч на 1 мм.
Если ширина прозрачной щели (или отражающих полос) а, а ширина непрозрачных промежутков (или рассеивающих свет полос) b, то величина d = а + b называется периодом решетки.
Пусть на решетку падает плоская монохроматическая волна длиной А (рис. 106.).
Вторичные волны за дифракционной решеткой распространяются по всем направлениям. Найдем условие, при котором вторичные волны усиливают друг друга.
Рассмотрим волны, идущие под углом (р. Разность хода между волнами от краев соседних щелей равна длине отрезка АС. В треугольнике АСВ катет | АС | = | АВ | sin ф = d sin ф. Максимум будет наблюдаться, если | АС | = kЛ, то есть
При выполнении этого условия усилят друг друга волны, идущие от всех других точек щелей.
Для наблюдения дифракционной картины за решеткой помещают собирающую линзу, в фокусе которой располагается экран. Линза фокусирует лучи, идущие параллельно, в одной точке. В этой точке происходит сложение волн и их взаимное усиление.
При освещении решетки монохроматическим светом в направлении ф = 0 наблюдается максимум нулевого порядка — центральный. Но обе стороны от него наблюдаются максимумы 1-го, 2-го и т. д. порядков.
Электрические источники света
... люминесцентные (люминесцентные и газоразрядные лампы). Основные параметры электрических источников света: напряжение питающей сети; номинальная мощность; световая отдача, измеряемая числом люменов на один ватт (лм/Вт); ... с обеих сторон ограды. По правилам устройства электроустановок освещение делят на три системы. Общее освещение в производственных помещениях может быть равномерным (с равномерной ...
При освещении белым светом происходит его разложение в спектр: максимумы волн разной длины, кроме центрального, наблюдаются под разными углами.
Дифракционная решетка широко используется для измерения длин световых волн, для анализа спектрального состава сложного излучения, в качестве датчиков линейных перемещений и др. Поляризация света
Явление интерференции, дифракции и дисперсии говорит о том, что свет — волна. Но мы знаем два вида механических волн: поперечные и продольные. Какими свойствами обладает световая волна? Юнг и Френель считали, что световые волны — продольные. Однако экспериментальные факты, которые не удавалось объяснить из представлений, что свет — продольная волна, показывали обратное.
Одним из таких экспериментальных фактов, который нельзя объяснить свойствами продольной волны, является опыт с пластинками из турмалина (рис. 107).
Возьмем две прямоугольные пластинки из турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с направлением оптической оси кристалла, и наложим их так, чтобы их оси совпадали по направлению. Пропустим через сложенную пару пластинок узкий пучок света от фонаря. Начнем поворачивать одну из пластинок вокруг пучка, оставляя другую неподвижной. Мы обнаружим, что след пучка ослабевает, и когда пластинка повернется на 90% он совсем исчезнет. При дальнейшем повороте пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180°.
Таким образом, при повороте на 360° интенсивность пучка, прошедшего через обе пластинки два раза, достигает максимума (когда оси пластинок параллельны).
Явление протекает совершенно одинаково, какую бы из пластинок не поворачивали и безразлично в какую сторону.
Если устранить вторую пластинку и вращать первую или вращать обе пластинки вместе так, чтобы их оси совпадали, то мы не заметим никакого изменения интенсивности проходящего пучка. Таким образом, изменение интенсивности происходит только тогда, когда свет, прошедший одну из пластинок, встречает другую, ось которой меняет направление по отношению к оси первой.
Можно объяснить все наблюдаемые явления, если сделать следующие допущения:
- Турмалин способен пропускать световые волны лишь только в том случае, когда они направлены определенным образом относительно его оси (например, параллельно оси);
- Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны);
- В свете фонаря (Солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.
Предположение третье объясняет, почему естественный свет хорошо проходит через турмалин при любой его ориентации, хотя турмалин по предположению первому способен пропускать световые колебания только в одном направлении. Это объясняется тем, что в естественном свете всегда окажется одна и та же доля колебаний, направление которых совпадает с направлением, пропускаемым турмалином. Прохождение света через турмалин приводит к тому, что из всех возможных направлений поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Такой свет называется поляризованным. Объяснение опыта с кристаллами турмалина: первая пластинка поляризует проходящий свет, оставляя в нем колебания только одного направления. Эти колебания могут пройти через вторую пластинку турмалина полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемым вторым турмалином, т. е. когда ее ось параллельна оси первой пластинки. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемым вторым турмалином, то свет будет полностью задержан. Если же направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично. Это показывает опыт.
Интерференция света
... требует учёта как волновых, так и корпускулярных св-в света и даётся на основе квант. электродинамики. Интерференция света - это сложение полей световых волн от двух или нескольких (сравнительно небольшого ... света в среде уменьшается: u = c/n , где c - скорость света в вакууме, то уменьшается и длина волны: l = uT =(c/ n )T = l0 /n , где T - период колебаний, l 0 - длина волны в ...
Объяснить опыты с турмалином, как мы выяснили, можно лишь допустив, что свет обладает свойствами поперечной волны. С помощью представления о поперечных световых волнах хорошо объясняются и другие многочисленные явления, связанные с поляризацией света. Признание световых волн поперечными имело очень большое значение в учении о свете.
Впоследствии была установлена связь между оптическими и электромагнитными явлениями, которая и нашла свое выражение в электромагнитной теории света, выдвинутой Максвеллом в 1876 г. Электромагнитная волна представляет собой распространение переменного электромагнитного поля, причем напряженности электрического и магнитного полей перпендикулярны друг к другу и к линии распространения волны: электромагнитные волны поперечны. Таким образом, поперечность световых волн, доказанная опытами по поляризации света, естественно объясняется электромагнитной теорией света. В световой волне, как и во всякой электромагнитной волне, имеются одновременно два взаимно перпендикулярных колебания: направление колебаний вектора напряженности электрического поля и индукция магнитного поля. Все, что мы говорим о направлении световых колебаний, относится к направлению колебаний вектора напряженности электрического поля. Специальные опыты позволили установить, что в волне, прошедшей через турмалин, колебания вектора напряженности электрического поля направлены вдоль оси турмалина.
Итак, можно сделать вывод: свет обладает свойствами поперечной электромагнитной волны.
Интерференция Света
Сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства, называют интерференцией (рис. 103).
Интерферировать могут только когерентные волны — волны, имеющие одинаковую частоту (длину волны) и постоянную во времени разность фаз. Для получения когерентных волн свет от одного источника делят тем или иным способом на две части примерно равной интенсивности, создают между ними разность хода волн, а затем снова сводят вместе. Существует несколько способов получения когерентных световых волн.
Пусть две когерентные волны приходят в точку М, пройдя геометрические пути s1 и s2 (рис. 104 ).
Если разность S2-S1 равна целому числу k длин волн А, то в точке М гребень одной волны будет накладываться на гребень другой, т. е. волны будут максимально усиливать друг друга:
Интерференция света в науке и технике
... размеров деталей в длинах световой волны, для контроля качества оптических систем и многого другого. Цель курсовой работы: рассмотреть применение интерференции света в науке и технике, а также ... волн. где и - фазовая скорость первой и второй волны. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке , будет равна Заменив через ( - длина волны в вакууме), выражению для разности ...
Интерферирующие световые волны максимально усиливают друг друга, если их разность хода равна целому числу длин волн.
Число k называется порядком интерференционного максимума.
Если дельта d равна нечетному числу длин полуволн, то при сложении волн гребень одной волны будет накладываться на впадину другой, поэтому волны будут максимально ослаблять друг друга
Таким образом, интерферирующие волны будут максимально ослаблять друг друга, если их разность хода равна нечетному числу полуволн.
Практическое применение интерференции света разнообразно: контроль качества поверхностей, создание светофильтров, просветляющих покрытий, измерение длины световых волн, точное измерение расстояния и др. На явлении интерференции света основана голография.