Физико-механические свойства горных пород

Реферат

В табл. 2 приведена характеристика абразивности некоторых минералов и горных пород.

Таблица 2. — «Сравнительная характеристика абразивности.»

Минералы и горные породы

Износ стали эталонного кольца см3/м

Гипс

0,04

Известняк, доломит

0,18-0,27

Халцедон

0,32

Кварц

0,53-0,58

Кварцит

0,60-0,62

Корунд

1,7

12. Буримость

БУРИМОСТЬ горных пород (а. rock drillability; н. Воhrbarkeit der Gesteine, Воhrvermogen von Gesteinen; ф. forabilite de roches; и. perforabilidad de las rocas) — сопротивляемость горных пород разрушению в процессе бурения.

Оценивается скоростью бурения (проходка в единицу времени; рис.8), временем и энергоёмкостью бурения единицы длины ствола скважины или шпура при стандартных условиях проведения опыта для каждого типа буровой машины.

Буримость ухудшается с увеличением плотности, прочности, вязкости, твёрдости, абразивности горных пород, зависит также от минерального состава, строения пород и термодинамических условий, в которых они находятся. Для различных видов породоразрушающего инструмента и методов бурения разработаны шкалы буримости.

Для перехода от одной шкалы к другой, а также от стандартных условий бурения к нестандартным существуют поправочные коэффициенты и обобщённые классификации горных пород по буримости.

Во всех классификациях породы по буримости разделяют на легкобуримые (например, каменный уголь), среднебуримые (мергели), труднобуримые (перидотит) и весьма труднобуримые (железистые кварциты).

Буримость учитывается при нормировании труда рабочих, оценке производительности бурения, выборе породоразрушающего инструмента, количества буровых установок, планировании и организации буровых работ в конкретных горно-геологических условиях.

Рис. 8

13. Водно-коллоидные свойства

Вода находится в горных породах благодаря наличию в них всевозможных пустот (трещин, пор, каналов и т.д.).

Абсолютно сплошных пород, не содержащих сколь-нибудь малое количество пор, в природе не существует. Эти пустоты, как правило, и занимает вода благодаря своей высокой подвижности (мобильности, текучести) наряду с другими мобильными компонентами, например такими, как газы, углеводородные флюиды и др. Установлено, что ниже уровня грунтовых вод до глубин около 4 — 5 км и более практически все пустоты горных пород (за исключением углеводородных залежей) заполнены водой, образующей в пределах литосферы региональные неразрывные макроскопические системы гидросферы. Они — предмет исследования гидрогеологии, науки, изучающей условия формирования, динамику и распространение запасов подземных вод на Земле. Мы же остановимся на некоторых интересных и важных особенностях воды в горных породах, проявляющихся в основном не на макроскопическом, а на микроскопическом уровне.

Очевидно, не многие знают, что вода в горных породах находится либо в свободном, либо в связанном состоянии. Поэтому выделяют две категории воды в горных породах — свободную и связанную. Свободная вода — это та, с которой все мы обычно привыкли иметь дело: она свободно может перемещаться в породах по крупным порам, трещинам путем фильтрации под действием силы тяжести или напора, она образует горизонты подземных вод и обладает обычными для воды физическими свойствами. Именно эта вода добывается и эксплуатируется человеком для различных нужд. В отличие от нее связанная вода находится и удерживается в наиболее мелких порах и трещинах горных пород и испытывает со стороны поверхности твердой фазы минералов «связывающее» влияние разной природы и интенсивности, изменяющее ее структуру и придающее ей аномальные свойства, то есть не такие, как у обычной, свободной воды. Суммарное содержание связанной воды в литосфере Земли составляет от 0,31 до 0,35 млрд. км3, то есть около 42% от общего количества воды в земной коре (по данным Ф.А. Макаренко).

Однако связанную воду не так просто извлечь из породы, в которой она находится. Под действием поверхностных сил разной природы она относительно прочно удерживается на поверхности минералов, не подчиняется силам гравитации и ее передвижение в породах может происходить лишь под влиянием сил иной природы. Настоящая статья знакомит с новыми фактами и современными взглядами на проблему формирования аномальных особенностей связанной воды и ее влияния на свойства горных пород.

Связная горная порода имеет водно-коллоидную связь между частицами минералов и минеральными агрегатами.

14. Другие классификации горных пород.

Природные каменные материалы получают из горных пород, залегаемых в верхних слоях земной коры в виде сплошных массивов и скоплений обломков разной крупности. Каменные строительные материалы получают механической обработкой горных пород путем раскалывания, распиловки, дробления, обтески, шлифовки и полировки, поэтому их свойства в основном зависят от качества исходной горной породы, ее химических, физических и механических свойств. Качество горных пород, из которых изготовляют дорожно- строительные материалы, в свою очередь, зависит от минералогического состава, структуры, текстуры и состояния свежести породы.

По геологическому происхождению (генезису) горные породы разделяются на три основные группы с подгруппами:

I. Изверженные (магматические) —первичные:

А. Глубинные (интрузивные) —граниты, сиениты, диориты, габбро и др.

Б. Излившиеся (эффузивные)—диабазы, порфиры, базальты, туфовые лавы и др.

II. Осадочные — вторичные:

  • А. Механические, обломочные отложения: 1)рыхлые — валуны, щебень, гравий, песок;
  • 2) сцементированные — песчаники, конгломераты, брекчии.

Б. Органогенные и химические образования —различные известняки, доломиты, магнезиты, гипс, ангидрит.

III. Метаморфические (видоизмененные)—гнейс, мраморы, кварциты.

По химическим исследованиям состава горных пород верхних слоев земной коры выявлено преобладание в них кремнезема SiO2— 59,12% и глинозема Аl2О3— 15,34%, дальше следует окись кальция СаО — 5,08%, окись натрия N2O — 3,84, окись железа FeO —3,80; окись магния Mg —3,49; К2О — 3,13; Fe2O3 —3,08% и немного других окислов и химических элементов. Как видно, породообразующие минералы изверженных пород по своему химическому составу разнообразны. Примерно из 2500 различных минералов породообразующими являются около 50.

Главные породообразующие минералы распределены в горных породах, применяемых в строительстве, примерно в следующих пропорциях: полевые шпаты (ортоклазы и плагиоклазы) — 57,9—59,5%; роговая обманка, авгит; оливин, змеевик— 16,8%; кварц— 12— 12,6; слюда 3,6—3,8; кальцит (известковый шпат) — 1,5; каолинит и другие аналогичные минералы— 1,1 % и т. д.

Горные породы представляют собой более или менее однородные минеральные агрегаты, слагающие земную кору, состоящие из одного или нескольких минералов, Горные породы, состоящие из одного минерала, называют простыми или мономинеральными (кварцит, гипс), а из нескольких минералов (гранит, базальт, гнейс) — сложными или полиминеральными.

А) Изверженные горные породы.

Изверженные горные породы образовались из расплавленной магмы, которая застыла, поднявшись к поверхности земли. Поднимаясь по трещинам в земной коре, магма претерпевала разнообразные воздействия (давление, понижение температуры), что приводило к образованию пород различного минералогического состава и строения, а следовательно, и технических свойств.

Химический состав изверженных горных пород также разнообразен и состоит в основном из кремния, алюминия, железа, кальция, магния, калия и натрия. По содержанию кремнезема эти породы разделяют на. кислые (85—65%), нейтральные (65—52%), и основные (52—35%).

Кислые горные породы богаты соединениями кремния, калия, натрия и отличаются светлой окраской; основные породы содержат много кальция, магния, железа и окрашены чаще в темный цвет.

Из магмы, не вышедшей на поверхность земли и застывшей на глубине, под ее верхними слоями образовались глубинные горные породы. Излившиеся горные породы образовались из магмы, застывшей ближе к поверхности или на самой поверхности земли. Вследствие медленного охлаждения и отвердевания в глубинных породах процессы кристаллизации проходили более полно, образуя крупно- и среднезернистые структуры. В условиях быстрого охлаждения излившихся пород образовались мелкокристаллические, мелкозернистые, аморфные, стекловатые структуры. Однообразная мелкокристаллическая и мелкозернистая структура является признаком более высокой прочности и стойкости против выветривания, хорошей колкости по сравнению с крупнозернистыми разновидностями горных пород. Стекловатая структура определяет хрупкость породы.

Глубинные горные породы.

Граниты — распространенная горная порода Они представляют собой равномерно кристаллические породы состоящие в основном из кварца (20—40%), полевого шпата — ортоклаза (40—70%), слюды, иногда роговой обманки (5—20%).

Цвет гранитов зависит в основном от ортоклаза и чаще бывает серым и красным.

Чем больше в гранитах зерен кварца, непосредственно связанных между собой, тем прочнее гранит. При изломе гранита разрушение происходит по зернам, а не по плоскостям соединения зерен минералов. Граниты могут быть мелко-, крупно- и среднезернистыми. Чем мельче зернистость, тем граниты прочнее и более морозостойки, а следовательно, и устойчивее против выветривания.

Граниты характеризуются средней плотностью 2,7—2,8 г/см3; объемной массой 2,60—2,65 г/см3, малой водонасыщаемостью, значительной устойчивостью против выветривания и высокой прочностью при сжатии 1400—2500 кгс/см2.

Обладая высокими техническими качествами, граниты широко применяются для дорожно-мостовых сооружений в качестве щебня, брусчатки, бортового камня, плит, бутового камня. Месторождения гранитов в СССР занимают обширные территории в Карелии, на Кольском полуострове, Украине, Кавказе, Урале, Алтае, Тянь-Шане.

Сиениты отличаются от гранитов тем, что не имеют в своем составе кварца. Цвет сиенитов серый, серо-красный, темно-зеленый; По плотности и прочности сиениты близки к гранитам, но менее, стойки против выветривания. Плотность сиенитов 2,7—2,9 г/см3, объемная масса 2,6—2,8 г/см3. Предел прочности при сжатии в среднем 1200—1800 кг/см2. Применяются сиениты наравне с гранитами и являются ценной породой для получения щебня, брусчатки и бортового камня. Сиениты встречаются реже гранитов. Месторождения сиенитов имеются на Урале, Украине, Кольском полуострове, в Сибири, на Кавказе.

Диориты состоят в основном из плагиоклаза (около 75%) и рогозой обманки, иногда авгита и биотита. Цвет диоритов серый или темно-зелепый, структура равномерно кристаллическая. Диориты обладают более высокой вязкостью и стойки против выветривания. Плотность диоритов 2,85—3,2 г/см3, объемная масса 2,8—3,0 г/см3, предел прочности при сжатии 1500—2800 кг/см2. Обладая большой вязкостью, диориты характеризуются хорошим сопротивлением ударной нагрузке. Применяются они в дорожном строительстве для получения брусчатки и щебня, а также плиток для облицовочных работ. Месторождения диоритов имеются в Крыму, на Урале, Украине, Кавказе, в Средней Азии и др.

Габбро состоит до 50% из плагиоклаза (основного), авгита и оливина. По цвету бывает серым, темно-зеленым и черным. Структура габбpo преимущественно крупнозернистая, плотность 2,9— 3,3 г/см3, объемная масса близка к плотности. Предел прочности при сжатии 2000-3500 кгс/см2. обладает большой плотностью и вязкостью. Применяется он при приготовлении щебня, штучных камней и плит при облицовочных работах. Месторождения габбро имеются на Урале, Украине, Кавказе и др.

Излившиеся горные породы.

Кварцевые порфиры по минералогическому составу соответствуют граниту, цвет чаще кирпично-красный, бурый, зеленоватый. Структура порфировая с вкраплением в основную массу крупных кристаллов кварца, плотность 2,4— 2,6 г/см3, предел-прочностн при сжатия 1300—1800 кг/см2. Кварцевые порфиры так же, как и граниты, широко применяются в дорожном строительстве для получения каменных материалов в виде щебня, бута, колотой и тесаной шашки. Месторождения кварцевых порфиров имеются в Крыму, на Урале, Алтае, Сахалине.

Ортоклазовые порфиры и трахиты по минералогическому составу соответствуют сиенитам, отличаясь содержанием вулканического стекла. Трахиты имеют пористую текстуру и шероховатую поверхность. По прочности они уступают сиенитам и большинство из них имеют светлую окраску. Месторождения ортоклазовых порфиров имеются на Кавказе, Урале, в Крыму.

Диабазы по минералогическому составу соответствуют габбро, преимущественно мелкозернисты, состоят из основного полевого шпата и пироксена, реже входят оливин и роговая обманка. Диабазы бывают серо-зелеными и темно-зелеными. Их плотность в среднем 2,7—3,0 г/см3, прочность при сжатии около 2000 кгс/см2 и доходит до 4000 кгс/см2. Обладая большой вязкостью, диабазы хорошо сопротивляются истиранию. Применяются они для получения штучного камня—брусчатки, шашки, разнообразных плит и высококачественного щебня. Месторождения диабазов имеются в Карелии, на Кавказе, Украине, Урале.

Базальты — породы темного цвета, плотные, скрытокрпсталлической структуры, состоящие из плагиоклаза и авгита. Вследствие неполной кристаллизации минералов породы содержат значительное количество стекловатой массы.

Технические свойства базальтов крайне различны и мало отличаются от свойств диабаза, хотя прочность базальтов при сжатии часто бывает выше и доходит иногда до 5000 кгс/см3. Относительная хрупкость базальтов несколько снижает его свойства. В дорожных работах базальты используются для изготовления шашки, брусчатки, щебня. Месторождения базальтов имеются в Армении, Забайкалье, на Украине, Сахалине.

Вулканические туфы — пористые породы, образовавшиеся при уплотнении вулканического пепла или из застывшей вулканической лавы с попавшими туда пеплом и песком.

Технические свойства туфов крайне разнообразны и зависят от их состава и степени цементации. Объемная масса туфов в среднем равна 0,75—1,4 г/см3, предел прочности при сжатии 70—700 кгс/см2. Они воздухопроницаемы, плохо проводят тепло и достаточно устойчивы против выветривания, легко поддаются обработке. Лучшие разновидности туфов (артикский туф) применяются для изготовления стеновых блоков, плит для облицовки, щебня для легких бетонов и как местный материал для устройства дорожных покрытий.