МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
НИТУ МИСИС
МОСКОВСКИЙ ГОРНЫЙ ИНСТИТУТ
КАФЕДРА «ТЕХНОЛОГИЯ, МЕХАНИЗАЦИЯ И ОРГАНИЗАЦИЯ ОТКРЫТЫХ ГОРНЫХ РАБОТ»
Доклад
на тему: «Бактериальное выщелачивание»
Выполнил: ст. гр. ТО-2-Г
Рябенко Е.А.
Проверил: проф. Кононенко Е.А.
Москва-2014
Бактериальное выщелачивание — извлечение химических элементов из руд, концентратов и горных пород с помощью бактерий или их метаболитов.
выщелачивание бактериальный элемент химический
Большая часть совмещается с выщелачиванием слабыми растворами серной кислоты бактериального и химического происхождения, а также растворами, содержащими органические кислоты, белки, пептиды, полисахариды и т.д. Выщелачивание металлов из руд известно с давних времён. В 1566 в Венгрии осуществляли полный цикл выщелачивания с использованием системы орошения, в Германии выщелачивание меди из отвалов практиковалось с 16 века. В 1725 в Испании на руднике Рио-Тинто выщелачивали медные руды. Это были первые практические применения Бактериального выщелачивания, механизм которого (участие бактерий) не был известен. В 1947 американскими микробиологами выделен из рудничных вод ранее неизвестный микроорганизм Thiobacillus (Th.) ferrooxidans, который окисляет практически все сульфидные минералы, серу и ряд её восстановленных соединений, закисное железо, а также Cu+, Se2-, Sb3+, U4+ при pH 1,0-4,8 (оптимум 2,0-3,0) и t 5-35°С (оптимум 30-35°С).
Число клеток этих бактерий в зоне окисления сульфидных месторождений достигает 1 млн. — 1 млрд. в 1 г руды или 1 мл воды.
При бактериальном выщелачивании руд цветных металлов широко используются тионовые бактерии Th. ferrooxidans, которые непосредственно окисляют сульфидные минералы, серу и железо и образуют химический окислитель Fe3+ и растворитель — серную кислоту. Поэтому расход Н2SO4 при бактериальном выщелачивании снижается. Fe3+ — основной окислитель при выщелачивании руд урана, ванадия, меди из вторичных сульфидов и других элементов. Наибольшая скорость бактериального выщелачивания достигается при тонком измельчении руды или концентрата (200 меш и меньше), в плотных пульпах (до 20% твёрдого), при активном перемешивании и аэрации пульпы, а также оптимальных для бактерий pH, температуре и высоком содержании клеток бактерий (109-1010 в 1 мл пульпы).
Разработка месторождений методами выщелачивания
... кавитацией Геотехнология Выщелачивание проводят из отвалов бедной руды (кучное выщелачивание) или непосредственно из рудного тела, если руда пористая или ... Интенсификация выщелачивания Интенсификация выщелачивание достигается одновременной сорбцией выщелачиваемого компонента на смолах (так называемое диффузионное выщелачивание), внесением бактерий (см. Бактериальное выщелачивание), применением ...
При благоприятных условиях из концентратов в раствор за 1 ч переходит Cu до 0,7 г/л, Zn — 1,3, Ni — 0,2 и т.д. До 90% As извлекается из олово- и золотосодержащих концентратов за 70-80 ч. Скорость окисления сульфидных минералов в присутствии бактерий возрастает в сотни и тысячи раз, а Fe2+ примерно в 2 * 105 раз по сравнению с химическим процессом. Селективность процесса бактериального выщелачивания цветных металлов определяется как кристаллохимическими особенностями сульфидов, так и их электрохимическим взаимодействием. Редкие элементы входят в кристаллические решётки сульфидных минералов или вмещающих пород и при их разрушении переходят в раствор и выщелачиваются. Следовательно, в выщелачивании редких элементов бактерии играют косвенную роль.
Бактериальное выщелачивание цветных металлов проводят из отвалов бедной руды (кучное) и из рудного тела (подземное).
Технологическая схема бактериального выщелачивания приведена на рис.
Орошение руды в отвале или в рудном теле осуществляется водными растворами Н2SO4, содержащими Fe3+ и бактерии. Раствор подаётся через скважины при подземном или путём разбрызгивания на поверхности при кучном выщелачивании. В руде в присутствии О2 и бактерий идут процессы окисления сульфидных минералов и медь переходит из нерастворимых соединений в растворимые. Раствор, содержащий медь, поступает на цементационную или другие установки (сорбция, экстракция) для извлечения меди, затем на отвал или рудное тело (схема замкнутая).
Интенсификация выщелачивания достигается активизацией жизнедеятельности тионовых и других сульфидокисляющих бактерий, присутствующих в самой руде и адаптированных к конкретным условиям среды (тип руды, химический состав растворов, температура и т.д.).
Для этого необходимы pH 1,5-2,5, высокий окислительно-восстановительный потенциал (Eh 600-750 мВ), благоприятный и стабильный химический состав растворов, что достигается путём их регенерации и режима аэрирования и увлажнения (орошения) руды. В отдельных случаях следует добавлять соли азота и фосфора, а также бактерии, выращенные на оборотных растворах в прудах-регенераторах. Число клеток бактерий в выщелачивающем растворе и руде должно быть не ниже 106-107 соответственно в 1 мл или 1 г. Себестоимость 1 т меди, полученной этим способом, в 1,5-2 раза ниже, чем при обычных гидрометаллургических или пирометаллургических способах.
Бактериальное выщелачивание упорных сульфидных концентратов проводится прямоточно в серии последовательно соединённых чанов с перемешиванием и аэрацией аэрлифтом при t 30°С, pH 2,0-2,5 и концентрации клеток Th. Ferrooxidans 1010-1011 в 1 мл пульпы. Схема переработки сульфидных концентратов замкнутая. Оборотные растворы после частичной или полной регенерации используются в качестве питательной среды для бактерий и выщелачивающего раствора. Наиболее активными являются культуры бактерий, адаптированные к комплексу факторов (pH, тяжёлые металлы, тип концентрата и т.д.) в условиях активного процесса бактериального выщелачивания. Примеры бактериального выщелачивания в чанах: из коллективных медно-цинковых концентратов за 72-96 ч извлекаются в раствор до 90-92% Zn и Cd при извлечении Cu и Fe соответственно около 25% и 5%; из свинцовых концентратов можно полностью извлечь Cu, Zn и Cd. В растворах достигаются концентрации металлов: Cu до 50 г/л, Zn до 100 г/л и т.д. В олово- и золотосодержащих мышьяковистых концентратах арсенопирит практически полностью разрушается за 120 ч, что позволяет в одних случаях очистить концентраты от вредной примеси мышьяка, в других — при последующем цианировании извлечь до 90% золота.
Экономические основы добычи цветных металлов
... естественные скопления, которые называются месторождениями. В основном вся цветная металлургия базируется на привозном сырье аппатитов и оловянного концентрата из горно-обогатительных комбинатов Дальнего Востока и Восточной ... -никелевые, свинцово-медно-цинковые руды. Они содержат до 10-15 ценных металлов. Руды цветных металлов, как правило, очень бедные и содержат всего несколько, а то и ...
В различных странах ведутся также исследования по бактериальному выщелачиванию металлов из отходов обогащения, пылей,шлаков и т.д. Разрабатываются способы бактериального выщелачивания золота, марганца, цветных металлов, а также обогащения бокситов с помощью гетеротрофных микроорганизмов (микроскопические грибы, дрожжи, бактерии).
Эти микроорганизмы в качестве источника энергии и углерода используют органические вещества.
Ведущее значение при выщелачивании с помощью гетеротрофов играют процессы комплексообразования органических соединений с металлами, а также перекиси и гуминовые кислоты.
Внедрение бактериального выщелачивания, как и других гидрометаллургических способов добычи металлов, имеет большое экономические значение. Расширяются сырьевые ресурсы за счёт использования бедных и потерянных в недрах руд и т.д. Бактериальное выщелачивание обеспечивает комплексное и более полное использование минерального сырья, повышает культуру производства, не требует создания сложных горнодобывающих комплексов, благоприятно для охраны окружающей среды.
В промышленных масштабах Бактериальное выщелачивание применяется для извлечения меди из забалансовых руд в США, Перу, Испании, Португалии, Мексике, Австралии, Югославии и других странах. В ряде стран (США, Канада, ЮАР) бактерии используются для выщелачивания урана. В CCCP Бактериальное выщелачивание меди внедряется на ряде месторождений.