Формирование автономных систем электроснабжения сельскохозяйственных объектов на основе возобновляемых источников энергии

Реферат

С конца прошлого столетия в экономике России произошли значительные изменения. Эти изменения, в первую очередь, заключались в переводе ее на рыночные отношения и признании многоукладное&trade-, когда наряду со старыми формами коллективного хозяйствования стали появляться и частные хозяйствующие субъекты. В аграрном секторе это отразилось в появлении фермерских, крестьянских и других частных хозяйств. В настоящее время число таких хозяйств не только не уменьшилось, а напротив, увеличилось в сотни раз. Так в Южном Федеральном округе в 2007 году число фермерских хозяйств1 превысило 20 тысяч штук.

По некоторым понятным причинам российские фермеры оказались удалены от энергетических коммуникаций, в частности от линий электропередачи, на значительные расстояния. Это породило проблему автономного электроснабжения, которая в начале решалась традиционными методами, то есть за счет использования автономных топливных электростанций. Однако последующее лавинное увеличение стоимости нефтепродуктов на фоне законов рыночной экономики потребовало изыскания альтернатив топливным электростанциям. Необходимость освоения альтернативных источников энергии для частного сельскохозяйственного производства отвечает и современным интересам национальной энергетики, что еще раз подтвердило диалектические законы развития общества, и показало, что новые проблемы нельзя решать традиционными методами.

В качестве альтернативных источников энергии в России и во всем Мире рассматриваются синтетические топлива, атомная энергетика и возобновляемые источники энергии (ВИЭ).

Априорно для фермерских хозяйств реальное практическое значение представляют нетрадиционные и возобнов.

1 — подразумеваются любые хозяйствующие субъекты, владеющие частным сельскохозяйственным производством ляемые источники энергии, особенно солнечное излучение, ветер и биотопливо, имеющие место в достаточном количестве на всей территории России с интенсивным сельскохозяйственным производством. Однако, их применение для автономного электроснабжения в России также оказалось проблематично, во-первых, из-за весьма заметного отставания отечественных энергоустановок на ВИЭ от мировых, а во-вторых, из-за отсутствия научно обоснованных методов формирования автономных электростанций на этих источниках энергии, отвечающих современным экономическим требованиям хозяйствования. При этом простой перенос мировых достижений в отечественные условия не может привести к положительным результатам из-за принципиальных отличий в хозяйствовании.

14 стр., 6846 слов

Использование современных информационных технологий в сельском хозяйстве

... в подготовке кадров, способных создавать и применять информационные технологии в сельском хозяйстве, в том числе и ведение «точного сельского хозяйства». Один из признаков применения информационных технологий в хозяйствах ... и коммуникационной техники в исследованных странах крайне низок для эффективного применения современных информационных технологий. В информационном обществе фермер может ...

В соответствии с этим для национального сельского хозяйства реальна проблема освоения возобновляемых источников энергии для автономного электроснабжения. Мало того, сельское хозяйство России с его малыми формами хозяйствования может стать первым масштабным потребителем ветроэнергетических и гелиоэнергетических установок, применение которых ограничивается низкой плотностью соответствующих источников энергии. В этом плане, проблему освоения возобновляемых источников энергии для автономного использования в сельском хозяйстве следует считать не отраслевой, а общенациональной, соответствующей мировым тенденциям развития энергетики.

Кроме того, возобновляемые источники энергии находятся в среде обитания человека в естественном состоянии, следовательно, их можно использовать, не нанося экологического урона, то есть, создаются предпосылки решения и экологических проблем современной энергетики.

Растущая потребность применения возобновляемых источников энергии диктует необходимость интенсивного повышения эффективности (конкурентоспособности) автономных систем электроснабжения на их основе. Как показывает мировой опыт освоения возобновляемых источников энергии, значительных успехов в повышении конкурентоспособности автономных систем электроснабжения можно достичь путем оптимизации их параметров. Это требует разработки соответствующих методов формирования энергосистем на основе ВИЭ. Методы формирования таких автономных систем, разработанные за рубежом, не могут быть использованы в российских условиях из-за производственно-экономических различий, а методы использования возобновляемых источников энергии в централизованных системах электроснабжения не могут быть применены для автономного электроснабжения из-за различных условий использования. В этой связи появляется ряд научно исследовательских задач по разработке методов формирования автономных систем электроснабжения на основе ВИЭ (в частности, на основе энергии солнечного излучении и ветра), решение которых представляет теорию и методологию построения соответствующих автономных систем электроснабжения, и являющихся основой для повышения их конкурентоспособности.

Учитывая мировой опыт развития малой энергетики на возобновляемых источниках энергии можно ожидать, что это направление в современных условиях окажется эффективно, так как не требует значительных материальных затрат и создает условия для оптимального использования существующих и разрабатываемых преобразователей энергии (фотоэлектрических преобразователей и ветроэлектростанций).

На основании изложенного, целью работы стало научное обоснование методов формирования автономных систем электроснабжения сельскохозяйственных объектов на основе энергии солнечного излучения и ветра, обеспечивающих их эффективное использование с учетом изолированности системы.

Диссертация состоит из введения, шести глав, заключения, списка используемой литературы и приложений.

Выводы по главе.

1. Минимально возможная площадь фотоэлектрических преобразователей солнечного излучения и емкость аккумуляторных батарей при автономном использовании фотоэлектрической установки зависят от среднесуточной мощности потребителя и требуемой вероятности энергообеспечения, в частности для типичных фермерских хозяйств с нагрузкой до 500 Вт, площадь ФЭП должна быть 2 — 10 м².

9 стр., 4308 слов

Экология и нетрадиционные источники энергии

... возобновляемые источники энергии, которые иногда называю «альтернативными источниками энергии». Они не обладают конечной природой: постоянно пополняются природными циклами земли и тем самым представляют собой неиссякаемый источник энергии. Возобновляемые виды энергии представляют собой идеальный источник энергии: ...

2. Для потребителей электроэнергии с раздельной нагрузкой (типичный представитель — передвижная пасека) наиболее эффективно применять параболоцилиндрические концентраторы с фиксированной в пространстве батареей фотоэлектрических преобразователей. При этом возможно уменьшение площади ФЭП на 25%.

3. Проведенные исследования показали, что оптимальная рабочая скорость ветра не зависит от среднесуточной мощности нагрузки, хотя стоимость всего энергетического комплекса пропорциональна этой мощности.

4. Для условий Ростовской области оптимальная рабочая скорость ветра для пропеллерной и роторной ветроустановок находится в диапазоне 5−6 м/с. При увеличении удельной стоимости ветроус-тановки оптимальная рабочая скорость незначительно увеличивается, а при увеличении удельной стоимости аккумуляторов несколько уменьшается. Однако пределы изменения незначительные — скорость остается в интервале 5,5 — 6 м/с.

5. При совместном применении ветроэнергетической установки и топливной электростанции рабочая скорость ветра увеличивается до 10 — 12 м/с. При этом размеры и стоимость ветроустановки значительно уменьшаются, хотя стоимость всей системы электроснабжения увеличивается. Увеличение стоимости обусловлено применением топливной электростанции и потреблением углеводородного топлива, однако это оправдано увеличением надежности электроснабжения до уровня сетевого.

6. Совместное применение ветроэнергетической установки и солнечной электростанции позволяет увеличить рабочую скорость ветра до 8 м/с. Однако, даже при такой, более компактной, ветроэнергетической установке совместное использование энергии ветра и солнечного излучения без концентраторов в настоящее время, по крайней мере, на территории Ростовской области, экономически не оправдано. Такой энергетический комплекс может стать конкурентоспособным в перспективе при снижении стоимости фотоэлектрических преобразователей в 2 раза и повышении их КПД в 2 раза.

6. ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ АВТОНОМНЫХ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ НА ОСНОВЕ ВОЗОБНОВЛЯЕМЫХ.

В будущем, предположительно к концу этого столетия, возобновляемые источники энергии (наряду с атомной энергией и традиционными источниками энергии) будут рассматриваться как основные. Но пока, из-за более высокой стоимости электроэнергии, возобновляемые источники энергии эффективно могут использоваться только в автономных системах электроснабжения небольших объектов, составляя альтернативу сетевому (или централизованному) электроснабжению. Это обусловлено более высокой стоимостью электроэнергии при сетевом электроснабжении достаточно удаленных объектов [21, 29, 30, 112 и др.].

Кроме сетевого электроснабжения, альтернативой электростанциям на возобновляемых источниках энергии выступают и автономные топливные электростанции. При этом не следует забывать, что автономное электроснабжение на основе возобновляемых источников энергии все же имеет несколько меньшую надежность по сравнению с обоими вариантами. Постараемся определить, при каких условиях автономные энергетические комплексы на основе возобновляемых источников энергии уже в настоящее время становятся конкурентоспособными.

80 стр., 39555 слов

Проектирование системы электроснабжения жилого микрорайона города

... для приёма электроэнергии от ИП по ограниченному числу питающих линий (2-4) и выдачи в сеть по большому числу линий. Задачей проектирования системы электроснабжения города является создание ...

Наиболее правильно сравнивать конкурирующие системы по стоимости вырабатываемой ими электроэнергии. То есть, критерием эффективности должно быть: сэ=^ (6.1).

Э ЧУ где Сэ — стоимость вырабатываемой электроэнергии, руб/кВт.ч.;

  • Zcэ — затраты на создание и эксплуатацию системы электроснабжения, руб.- количество потребленной электроэнергии за весь срок службы системы электроснабжения, кВт.

Если срок службы альтернативных систем электроснабжения уравнять (а это возможно путем учета эксплуатационных затрат [193]), то потребляемая энергия будет одна и та же при любой системе, так как определяется потребителем, а не поставщиком энергии. Это позволяет вместо стоимости потребляемой электроэнергии в качестве критерия эффективности использовать затраты на создание и эксплуатацию системы электроснабжения.

Таким образом, автономная система электроснабжения на основе возобновляемых источников энергии будет эффективна в том случае, когда затраты на ее создание и эксплуатацию не будут превышать аналогичных затрат для конкурирующей системы [29, 112, 113]. Это может произойти не только из-за экономии средств на покупку электроэнергии или топлива, но и за счет экономии капитальных вложений. То есть, в некоторых случаях, например, когда альтернативой выступает сетевая система электроснабжения, могут потребоваться большие денежные средства уже на стадии строительства конкурирующей системы.

И, наконец, более низкая надежность энергообеспечения автономной системы электроснабжения, порождает увеличение убытков от перерыва в электроснабжении, что следует учитывать при детальном технико-экономическом анализе сравниваемых систем. Если же сравниваемые системы используются для электроснабжения непроизводственных процессов, или имеют допустимую (хоть и разную) надежность энергообеспечения, то величину убытков можно исключить. В первом случае убытков нет по причине отсутствия производства продукции или услуг (электроснабжение непроизводственных процессов), а во втором случае по причине равенства убытков, так как продолжительность перерыва в электроснабжении допустима для рассматриваемых объектов электрификации.

Рассмотрим условия экономической эффективности автономных энергетических комплексов на основе возобновляемых источников энергии по сравнению с централизованным электроснабжением.

Расчетная схема централизованного электроснабжения приведена на рисунке 6.1.

Рисунок 6.1- Расчетная схема сетевого электроснабжения 1 — В Л-10, 2 — раъединитель, 3 — ТП 10/0,4, 4 — ВЛ-0,4.

Потенциальный потребитель электроэнергии вынужден оплачивать строительство воздушных или кабельных линий напряжением 10 кВ и 0,4 кВ, обоих разъединителей, подстанционного оборудования, включая силовой трансформатор, а так же оплачивать потребленную электроэнергию. При этом эксплуатационные расходы входят в тариф на электроэнергию и отдельно не оплачиваются. В этом случае затраты будут иметь следующие составляющие.

Zц = 2СР + С10 + Стп + С04 + Сэ (6.2) где — совокупные затраты при централизованном электроснабжении, руб.;

  • СР — стоимость разъединителя, руб.;
  • С]о — стоимость возводимой линии электропередач напряжением 10 кВ, руб.;

— Стп — стоимость подстанции 10/0,4, руб.- С04 — стоимость возводимой сети напряжением 0,4 кВ, руб.- Сэ — стоимость потребленной электроэнергии, руб. В выражении (6.2) переменными величинами являются Сю (зависит от протяженности ВЛ-10), Стп (зависит от мощности трансформаторной подстанции) и Сэ (зависит от величины потребляемой энергии).

2 стр., 971 слов

Технологии разработки программных систем на основе CASE средств

... процессы. Таким образом, CASE-технологии образуют целую среду разработки ИС. Итак, CASE-технология представляет собой методологию проектирования программных систем, а также набор инструментальных ... процесс проектирования и разработки ПО. При использовании методологий структурного анализа появился ряд ограничений (сложность понимания, большая трудоемкость и стоимость использования, неудобство ...

Стоимость низковольтных линий для автономных потребителей величина практически постоянная, так как трансформаторная подстанция 10/0,4 кВ устраивается вблизи компактного потребителя и длина ВЛ-0,4 составляет приблизительно 20 м. С учетом этого можно записать выражение для затрат в следующем виде:

  • Zц = 2СР + сюЬю + стп8тп + Со4 + сэ^&yen- (6.3) где Сю— стоимость одного километра ВЛ-10, руб./кмЬш — длина ВЛ-10, кмстп ~ удельная стоимость ТП, руб/кВА- 8ТП — мощность ТП, кВАсэ — тариф на электроэнергию, руб/кВт.ч электроэнергия, потребленная за весь срок службы, кВт.ч. Для автономных потребителей электроэнергии среднесуточная мощность составляет 0,5.. 1,5 кВт, максимальная мощность может достигать 3 кВт. С учетом этого целесообразно применять трансформаторную подстанцию 10/0,4 мощностью 25 кВА (минимальной мощности, выпускаемой отечественной промышленностью).

    В этом случае затраты для усредненных данных можно выразить только функцией от длины линии электропередач напряжением 10 кВ.

Затраты, связанные с автономным энергетическим комплексом на основе возобновляемых видов энергии, определяются в зависимости от выбранного варианта. автономная электростанция.

ZA = САС + Сэ + Ст (6.4) ветроэнергетическая установка с аккумуляторным резервом Сву + Саб + Сэ (6.5) ветроэнергетическая установка с автономной электростанцией, а — СВу + САс + Сэ + Ст (6.6) солнечная электростанция на основе фотоэлектрических преобразователей с аккумуляторным резервом.

ZA = СГУ + Саб + Сэ (6.7).

Здесь САс — стоимость автономной электростанции, руб.;

  • Сэ — эксплуатационные затраты, руб.;
  • Ст — стоимость топлива, руб.;
  • СВу — стоимость ветроэнергетической установки, руб.;
  • Саб — стоимость аккумуляторных батарей, руб.;
  • Сру — стоимость гелиоустановки на основе фотоэлектрических преобразователей, руб [«https:// «, 28].

На рисунках 6.2 — 6.5 показаны графики изменения стоимостных функций в зависимости от расстояния до точки подключения к централизованной сети, а в таблице 6.1 приведены предельные расстояния, при которых эффективно автономное электроснабжение. о.

Оч л н г» е о о к о н о.

20 л.

1/ 2j.

Расстояние, км.

Рисунок 6.2 — Функции стоимости систем электроснабжения.

N»=1,5 кВт).

1 — трехпроводная ВЛ-10, 2 — однопроводная ВЛ-10, 3 — ветроэнергетическая установка с аккумуляторным резервом, 4 — ветроэнергетическая установка с топливной электростанцией.

Рисунок 6.3 — Функции стоимости систем электроснабжения = 0,5 кВт).

1 — трехпроводная ВЛ-10, 2 — однопроводная ВЛ-10, 3 — ветроэнергетическая установка с аккумуляторным резервом, 4 — ветроэнергетическая установка с топливной электростанцией.

Расстояние, км.

Рисунок 6.4 — Функции стоимости систем электроснабжения.

1,5 кВт).

1 — трехпроводная ВЛ-10, 2 — однопроводная ВЛ-10, 3 — электростанция на бензине, 4 — электростанция на биогазе.

30 ю ^ а а*.

3 25 н ч 0.

2 20.

1? и15.

3 1 2 «4.

16 стр., 7519 слов

Передвижные электростанции

... энергии, автономных систем энергоснабжения. 7.Создание систем повышения квалификации и переподготовки кадров в области малой энергетики. Решение сформулированных выше задач требует создания набора математических моделей малых электростанций, автономных электроэнергетических систем ... 1. Моделирование автономных энергетических систем Развитие систем автономного электроснабжения обусловлено целым рядом ...

12 3 4.

Расстояние, км.

Рисунок 6.5 — Функции стоимости систем электроснабжения.

Ын = 0,5 кВт).

1 — трехпроводная ВЛ-10, 2 — однопроводная ВЛ-10, 3 — электростанция на бензине, 4 — электростанция на биогазе.

ЗАКЛЮЧЕНИЕ

Проведенные исследования обеспечили получение следующих результатов: установлены статистические характеристики энергии солнечного излучения, ветра и графики работы автономных потребителей электрической энергии, типичных для Южного Федерального округавпервые разработана общая методология и оригинальные методы оптимизации параметров автономных электростанций и систем электроснабжения на основе возобновляемых источников энергииразработаны перспективные варианты преобразователей энергии солнечного излучения и ветра, позволяющие значительно повысить конкурентоспособность автономных электростанций на основе возобновляемых источников энергииопределены условия и разработаны рекомендации по эффективному применению автономных систем электроснабжения на основе возобновляемых источников энергииразработаны инженерные методы массовых расчетов параметров автономных электростанций и систем электроснабжения на основе энергии солнечного излучения и ветраразработаны зональные агротребования на автономные ветроэнергетические установки для Ростовской области.

На основании проведенных исследований и полученных результатов можно сделать следующие научные выводы.

1. Сопоставление полученных графиков нагрузки автономных сельскохозяйственных объектов, полученных на основе разработанного правила приведения случайных величин и методики ускоренного их получения, со статистическими характеристиками энергии солнечного излучения и ветра показало, что нет достаточной корреляционной связи между потреблением энергии и поступающей энергией ветра, но существует значительная отрицательная корреляционная связь (коэффициент корреляции около 0,6) между потреблением энергии и поступающей энергией солнечного излучения. Это позволяет при оптимизации параметров автономных систем электроснабжения на основе ветроэнергетических установок учитывать среднесуточную эквивалентную мощность нагрузки, в то время как при оптимизации параметров солнечных электростанций необходимо учитывать график потребления электрической энергии.

2. В ходе системного анализа автономных систем электроснабжения установлено, что оптимальная ориентация фиксированных солнечных коллекторов зависит от облачности в течение суток. Так, например, из-за более вероятной облачности на территории Ростовской области во вторую половину светового дня, приемники солнечной энергии должны быть ориентированы на юго-восток с азимутальным углом -12° и углом наклона 42°, что уточняет прежние представления об их оптимальной ориентации строго на юг.

3. Системный анализ автономных систем электроснабжения позволил установить, что ветровые и штилевые периоды подчиняются нормальному закону распределения. Статистические параметры функции распределения ветровых и штилевых периодов зависят от скорости ветра. На основании полученных данных, в частности, установлено, что на территории Ростовской области ветер со скоростью не ниже 6 м/с действует с вероятностью 0,9 в течение не менее 7 суток, а ветер со скоростью менее 6 м/с наблюдается подряд не более 4 суток с той же вероятностью.

13 стр., 6252 слов

Нетрадиционные и возобновляемые источники энергии

... По электроэнергии - это районы автономного электроснабжения, особенно использующие привозное топливо, ... энергию. Для обеспечения бесперебойного энергоснабжения за счет НВИЭ, особенно автономных потребителей, система ... ветра стоимость электроэнергии, вырабатываемой крупной ветровой фермой, приближается к стоимости на топливных электростанциях. ... поселениям. В России энергетический потенциал малых рек ...

4. Анализ влияния концентраторов солнечного излучения и систем слежения на к.п.д. фотоэлектрических преобразователей и стоимость солнечных электростанций показал, что наиболее перепективны параболические концентраторы с коэффициентом концентрации 7−9 совместно с системами слежения в функции времени. При этом максимальное увеличение полезной энергии достигается при угловом шаге слежения равном половине угла раскрытия концентратора. Установлено также, что для небольших объектов (среднесуточная нагрузка менее 500 Вт) системы слежения применять нерационально, а фотоприемники должны при этом иметь параметры ориентации, указанные в выводе 2.

5. Разработанная методология формирования и методика оптимизации параметров солнечных электростанций позволяют установить предельно возможные размеры батареи фотоэлектрических преобразователей в зависимости от заданной вероятности энергообеспечения. В частности, площадь фотоэлектрических преобразователей для электроснабжения фермерской усадьбы с вероятностью 0,9 при среднесуточной нагрузке 1,5 кВт должна быть не менее 30 м. При уменьшении нагрузки она уменьшается и при 200 Вт составляет 3,5 м².

6. Формирование автономных систем электроснабжения на основе ветроэнергетических установок с аккумуляторами электрической энергии в соответствии с разработанной методологией обеспечивает снижение стоимости электроэнергии не менее чем в 1,5 раза. Реализация разработанных методов обоснования параметров ветро-электростанций с аккумуляторным резервом показала, что, независимо от среднесуточной мощности нагрузки, оптимальная рабочая скорость ветра равна 5, 5 — 6,5 м/с для пропеллерных и роторных ветроустановок. При совместном использовании ветроэнергетической установки и топливной электростанции оптимальная рабочая скорость ветра равна 10−12 м/с. Установлено также, что эти параметры остаются практически неизменными при изменении цен на составляющие автономных систем электроснабжения.

7. Электромагнитная связь ротора генератора с ветроколесом посредством машины постоянного тока обеспечивает стабильную э.д.с. при любых скоростях ветра (патент 1Ш № 2 313 639).

Это позволяет использовать для производства электроэнергии переменного тока ветроустановки типа ротора Савониуса, причем время использования энергии ветра увеличивается с 10 — 35% до 60 — 70%. Установлено также, что применение концентраторов эффективно при интенсивности солнечного излучения менее 200 Вт/м (Патент Яи № 2 331 822), что позволяет увеличить время использования ФЭП на 30% и за счет этого уменьшить площадь батареи фотоэлектрических преобразователей на 25%.

8. Определены условия экономически эффективного использования автономных электростанций на основе возобновляемых источников энергии. Так применение ветроэлектростанций с аккумуляторным резервом экономически целесообразно при удалении автономного объекта электроснабжения мощностью 1,5 кВт от линии электропередачи на расстояние более 2 км, совместное применение ветро-электростанции и топливной станции целесообразно при удалении таких объектов на расстояние 4 км. Применение автономных солнечных электростанций эффективно при удалении на 10 км, при мощности потребителей не более 600 Вт. По сравнению с известными методами формирования автономных систем электроснабжения на основе энергии ветра и солнечного излучения, предлагаемые методические и технические разработки позволяют уменьшить стоимость электроэнергии в 2 раза для ветровых электростанций и на 20% для солнечных электростанций. Это обеспечит годовой экономический эффект только в ЮФО в размере 400 млн. рублей.

3 стр., 1297 слов

Газопоршневые электростанции

... энергии. Применение этих установок во многих странах ми Перспективным также является использование электростанций ... энергии можно отнести малые гидроэлектростанции, дизельные электростанции, газо-поршневые электростанции, малые АЭС. Гарантом надежного электроснабжения, теплос Газотурбинные электростанции ... оборудование и работу автономно. Такие станции ... при среднегодовой скорости ветра 6 м/с экономит ...