Конструкции абсорберов

Реферат

В абсорберах этого типа поверхностью соприкосновения фаз является зеркало неподвижной или медленно движущейся жидкости, или же поверхность текущей жидкой пленки.

Поверхностные абсорберы. Эти абсорберы используют для поглощения хорошо растворимых газов (например, для поглощения хлористого водорода водой).

В указанных аппаратах газ проходит над поверхностью неподвижной или медленно движущейся жидкости (рис.XI-6).

Так как поверхность соприкосновения в таких абсорберах мала, то устанавливают несколько последовательно соединенных аппаратов, в которых газ и жидкость движутся противотоком друг к другу. Для того чтобы жидкость перемешивалась по абсорберам самотеком, каждый последующий по ходу жидкости аппарат располагают несколько ниже предыдущего. Для отвода тепла, выделяющегося при абсорбции, в аппаратах устанавливают змеевики, охлаждаемые водой или другим охлаждающим агентом, либо помещают абсорберы в сосуд с проточной водой.

Более совершенным аппаратом такого типа является абсорбер (рис.XI-7), состоящий из ряда горизонтальных труб, орошаемых снаружи водой. Необходимый уровень жидкости в каждом элементе 1 такого аппарата поддерживается с помощью порога 2.

Конструкции абсорберов 1

Пластинчатый абсорбер

Пластинчатый абсорбер 1

Поверхностные абсорберы имеют ограниченное применение вследствие их малой эффективности и громоздкости.

Пленочные абсорберы. Эти аппараты более эффективны и компактны, чем поверхностные абсорберы. В пленочных абсорберах поверхностью контакта фаз является поверхность текущей пленки жидкости. Различают следующие разновидности аппаратов данного типа: 1) трубчатые абсорберы; 2) абсорберы с плоско-параллельной или листовой насадкой; 3) абсорберы с восходящим движением пленки жидкости.

Трубчатый абсорбер

Трубчатый абсорбер 1

Абсорбер с плоскопараллельной насадкой

Абсорбер с плоскопараллельной насадкой 1

Абсорбер с восходящим движением пленки, Насадочные абсорберы

Широкое распространение в промышленности в качестве абсорберов получили колонны, заполненные насадкой –– твердыми телами различной формы. В насадочной колонне (рис.7) насадка 1 укладывается на опорные решетки 2, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя 3 равномерно орошает насадочные тела и стекает вниз. По всей высоте слоя насадки равномерного распределения жидкости по сечению колонны обычно не достигается, что объясняется пристеночным эффектом –– большей плотностью укладки насадки в центральной части колонны, чем у ее стенок. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам. Поэтому для улучшения смачивания насадки в колоннах большого диаметра насадку иногда укладывают слоями (секциями) высотой 2-3 м и под каждой секцией, кроме нижней, устанавливают перераспределители жидкости 4.

8 стр., 3830 слов

Расчет ректификационной колонны с колпачковыми тарелками

... аппарате образуют дистиллят (ректификат) и флегму – жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем ... С=К–Ф 2=2–2 2=2 (1.3) Для технических расчетов наиболее важной является диаграмма t–х,у, так как обычно ... при давлениях, не слишком близких к критическим. Предлагаем ознакомиться Расчет абсолютного спирта в спирте сырце формула pA =PA ...

Абсорбер с восходящим движением пленки 1

В насадочной колонне жидкость течет по элементу насадки главным образом в виде тонкой пленки, поэтому поверхностью контакта фаз является в основном смоченная поверхность насадки, и насадочные аппараты можно рассматривать как разновидность пленочных. Однако в последних пленочное течение жидкости происходит по всей высоте аппарата, а в насадочных абсорберах –– только по высоте элемента насадки. При перетекании жидкости с одного элемента насадки на другой пленка жидкости разрушается и на нижележащем элементе образуется новая пленка. При этом часть жидкости проходит через расположенные ниже слои насадки в виде струек, капель и брызг. Часть поверхности насадки бывает смочена неподвижной (застойной) жидкостью.

Основными характеристиками насадки является ее удельная поверхность а23 ) и свободный объем e33 ).

Величину свободного объема для непористой насадки обычно определяют путем заполнения насадки водой. Отношение объема воды к объему, занимаемому насадкой, дает величину e. Эквивалентный диаметр насадки находится по формуле

Абсорбер с восходящим движением пленки 2

Гидродинамические режимы. Насадочные абсорберы могут работать в различных гидродинамических режимах.

пленочный

режим подвисания.

режим эмульгирования

Режим эмульгирования соответствует максимальной эффективности насадочных колонн, прежде всего за счет увеличения поверхности контакта фаз, которая в этом случае определяется не только (и не столько) геометрической поверхностью насадки, а поверхностью пузырьков и струй газа в жидкости, заполняющей весь свободный объем насадки. Однако при работе колонны в таком режиме ее гидравлическое сопротивление относительно велико.

В режимах подвисания и эмульгирования целесообразно работать, если повышение гидравлического сопротивления не имеет существенного значения (например, в процессах абсорбции, проводимых при повышенных давлениях).

152 стр., 75662 слов

Анализ эффективности проведения гидравлического разрыва пласта ...

... гидравлического разрыва пласта 2.5.6. Заключительные работы 2.5.7. Техника для гидравлического разрыва пласта 2.5.8. Материалы, применяемые при гидравлического разрыва пласта 2.5.9. Факторы, определяющие эффективность гидроразрыва пласта 2.6. Расчет параметров гидравлического разрыва пласта ... работы этих скважин, а также соседних с ними мы увидим насколько эффективно их применение. Целью дипломного ...

Для абсорберов, работающих при атмосферном давлении, величина гидравлического сопротивления может оказаться недопустимо большой, что вызовет необходимость работать в пленочном режиме. Поэтому наиболее эффективный гидродинамический режим в каждом конкретном случае можно установить только путем технико-экономического расчета.

Абсорбер с восходящим движением пленки 3

эмульгационными

точкой захлебывания

режим уноса,

Выбор насадок. Для того чтобы насадка работала эффективно, она должна удовлетворять следующим основным требованиям: 1) обладать большой поверхностью в единице объема; 2) хорошо смачиваться орошаемой жидкостью; 3) оказывать малое гидравлическое сопротивление газовому потоку; 4) равномерно распределять орошающую жидкость; 5) быть стойкой к химическому воздействию жидкости и газа, движущихся в колонне; 6) иметь малый удельный вес; 7) обладать высокой механической прочностью; 8) иметь невысокую стоимость.

Насадок, полностью удовлетворяющих всем указанным требованиям, не существует, т.к., например, увеличение удельной поверхности насадки влечет за собой увеличение гидравлического сопротивления аппарата и снижение предельных нагрузок. В промышленности применяют разнообразные по форме и размерам насадки (рис.XI-15), которые в той или иной мере удовлетворяют требованиям, являющимся основными при проведении конкретного процесса абсорбции. Насадки изготавливают из разнообразных материалов (керамика, фарфор, сталь, пластмасса и др.), выбор которых диктуется величиной удельной поверхности насадки, смачиваемостью и коррозионной стойкостью.

Абсорбер с восходящим движением пленки 4

В качестве насадки используют также засыпаемые навалом в колонну куски кокса или кварца размерами 25-100 мм. Однако вследствие ряда недостатков (малая удельная поверхность, высокое гидравлическое сопротивление и др.) кусковую насадку в настоящее время применяют редко.

кольца Рашига

спиральные

При выборе размеров насадки следует учитывать, что чем больше размеры ее элемента, тем выше допустимая скорость газа (и соответственно –– производительность абсорбера) и ниже его гидравлическое сопротивление. Общая стоимость абсорбера с насадкой из элементов больших размеров будет ниже за счет уменьшения диаметра аппарата, несмотря на то, что его высота несколько увеличится по сравнению с высотой аппарата, имеющего насадку меньших размеров (вследствие снижения величины удельной поверхности насадки и интенсивности массопередачи).

Мелкая насадка предпочтительнее также при проведении процесса абсорбции под повышенным давлением, т.к. в этом случае гидравлическое сопротивление абсорбера не имеет существенного значения. Кроме того, мелкая насадка, обладающая большей удельной поверхностью, имеет преимущества перед крупной тогда, когда для осуществления процесса абсорбции необходимо большое число единиц переноса или теоретических ступеней изменения концентраций.

Основные достоинства насадочных колонн является простота устройства и низкое гидравлическое сопротивление. Недостатки: трудность отвода тепла и плохая смачиваемость насадки при низких плотностях орошения. Отвод тепла из этих аппаратов и улучшение смачиваемости достигаются путем рециркуляции абсорбента, что усложняет и удорожает абсорбционную установку. Для проведения одного и того же процесса требуются насадочные колонны обычно большего объема, чем барботажные.

24 стр., 11907 слов

Очистка промышленных газов от сероводорода

... кислоты. 1. Аналитическая часть 1.1 Описание методов очистки промышленных газов от сероводорода Сероводород в большинстве случаев является ядом для катализаторов и живых ... последующих технологических стадий переработки газа. Мокрая очистка газа от сероводорода. В процессе мокрой очистки газ промывается соответствующим поглотителем, абсорбирующим сероводород. В дальнейшем поглотитель подвергается ...

Насадочные колонны мало пригодны при работе с загрязненными жидкостями. Для таких жидкостей в последнее время стали применять абсорберы с «плавающей» насадкой. В этих абсорберах в качестве насадки используют главным образом легкие полые или сплошные пластмассовые шары, которые при достаточно высоких скоростях газа переходят во взвешенное состояние.

В абсорберах с «плавающей» насадкой допустимы более высокие скорости газа, чем в абсорберах с неподвижной насадкой. При этом увеличение скорости газа приводит к большому расширению слоя шаров и, следовательно, к незначительному увеличению гидравлического сопротивления аппарата.

Барботажные (тарельчатые) абсорберы

Тарельчатые абсорберы представляют собой, как правило, вертикальные колонны, внутри которых на определенном расстоянии друг от друга размещены горизонтальные перегородки –– тарелки . С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.

В настоящее время в промышленности применяются разнообразные конструкции тарельчатых аппаратов. По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны: 1) с тарелками со сливными устройствами и 2) с тарелками без сливных устройств.

Барботажные тарельчатые абсорберы 1

Тарельчатые колонны со сливными устройствами. В этих колоннах перелив жидкости с тарелки на тарелку осуществляется при помощи специальных устройств –– сливных трубок, карманов и т.п. Нижние колонны трубок погружены в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождение газа через сливное устройство.

Принцип работы колонн такого типа виден из рис.XI-16, где в качестве примера показан абсорбер с ситчатыми тарелками. Жидкость поступает на верхнюю тарелку 1, сливается с тарелки на тарелку через переливные устройства 2 и удаляются из нижней части колонны. Газ поступает в нижнюю часть аппарата проходит последовательно сквозь отверстия или колпачки каждой тарелки. При этом газ распределяется в виде пузырьков и струй в слое жидкости на тарелке, образуя на ней слой пены, являющийся основной областью массообмена и теплообмена на тарелке. Отработанный газ удаляется сверху колонны.

Переливные трубки располагают на тарелках таким образом, чтобы жидкость на соседних тарелках протекала во взаимопротивоположных направлениях. За последнее время все шире применяют сливные устройства в виде сегментов, вырезанных в тарелке и ограниченных порогом –– переливом.

К тарелкам со сливными устройствами относятся: ситчатые, колпачковые, клапанные и балластные, пластинчатые.

Гидродинамические режимы работы тарелок. Эффективность тарелок любых конструкций в значительной степени зависит от гидродинамических режимов их работы. Поэтому до описания основных конструкций тарелок рассмотрим эти режимы.

4 стр., 1736 слов

Закон паскаля для жидкостей и газов

... какому же выводу пришел Архимед? § 1.3 Закон Архимеда. Закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу вытесненной ... с меньшей. §1.4 Вывод закона Архимеда для тела произвольной формы. Гидростатическое давление жидкости на глубине есть . При этом считаем давление жидкости и напряжённость гравитационного поля ...

В зависимости от скорости газа и плотности орошения различают три основных гидродинамических режима работы барботажных тарелок: пузырьковый, пенный и струйный, или инжекционный. Эти режимы отличаются структурой барботажного слоя, которая в основном определяет его гидравлическое сопротивление и высоту, а также величину поверхности контакта фаз.

Пузырьковый режим., Пенный режим.

(инжекционный) режим. При дальнейшем увеличении скорости газа длина газовых струй увеличивается, и они выходят на поверхность барботажного слоя, не разрушаясь и образуя большое количество крупных брызг. Поверхность контакта фаз в условиях такого гидродинамического режима резко снижается.

Следует отметить, что переход от одного режима к другому происходит постепенно. Общие методы расчета границ гидродинамических режимов (критических точек) для барботажных тарелок отсутствуют. Поэтому при проектировании тарельчатых аппаратов обычно расчетным путем определяют скорость газа, соответствующую нижнему и верхнему пределам работы тарелки, и затем выбирают рабочую скорость газа.

Ситчатые тарелки.

Газ проходит сквозь отверстия тарелки и распределяется в жидкости в виде мелких струек и пузырьков. При слишком малой скорости газа жидкость может просачиваться (или «проваливаться») через отверстия та­релки на нижерасположенную, что должно привести к существенному сни­жению интенсивности массопередачи. Поэтому газ должен двигаться с определенной ско­ростью и иметь давление, достаточное для того, чтобы преодолеть давление слоя жидкости на тарелке и предотв­ратить стекание жидкости через от­верстия тарелки.

Ситчатые тарелки отличаются простотой устройства, легкостью мон­тажа, осмотра и ремонта. Гидравли­ческое сопротивление этих тарелок невелико. Ситчатые тарелки устойчи­во работают в довольно широком ин­тервале скоростей газа, причем в определенном диапазоне нагрузок по газу и жидкости эти тарелки обладают высокой эффективностью. Вместе с тем ситчатые тарелки чувствительны к загрязнениям и осадкам, кото­рые забивают отверстия тарелок. В случае внезапного прекращения поступления газа или значительного снижения его давления с ситчатых та­релок сливается вся жидкость, и для возобновления процесса требуется вновь запускать колонну.

Ситчатые тарелки  1

Разновидностью абсорберов с ситчатыми тарелками являются так на­зываемые пенные абсорберы, тарелки которых, как указыва­лось, отличаются от ситчатых конструкцией переливного устройства. При одинаковом числе тарелок эффективность пенных аппа­ратов выше, чем эффективность абсорберов с ситчатыми тарелками. Одна­ко вследствие большой высоты пены на тарелках гидравлическое сопро­тивление пенных абсорберов значительно, что ограничивает область их применения.

Колпачковые тарелки.

Колпачковые тарелки  1

На рис. Х1-20 показана схема работы колпачка при неполном (а) и полном (б) открытии прорезей, причем в последнем случае колпачок ра­ботает наиболее эффективно» Сечение и форма прорезей колпачка имеют второстепенное значение, но желательно устройство узких прорезей, так — как при этом газ разбивается на более мелкие струйки, что спосоосгвует увеличению поверхности соприкосновения фаз. Для создания большей поверхности контакта фаз на тарелках обычно устанавливают значитель­ное число колпачков, расположенных на небольшом расстоянии друг от друга.

3 стр., 1078 слов

Давление в жидкости и газе

... газов. В механике жидкости и газы рассматриваются как сплош­ные, непрерывно распределенные тела в занятой ими части про­странства. несжимаемой жид­кости Жидкости имеют следующие наиболее характерные свойства. Типичные жидкости ... по формуле: F =rghS , а давление на нижнее основание давление столба жидкости (1.65) P 0 , (1.66) Согласно формуле (1.82) сила давления на нижние слои жид­кости будет ...

Колпачковые тарелки изготовляют с радиальным или диаметральным переливами жидкости. Тарелка с радиальным переливом жидкости (рис. Х1-21, а) представляет собой стальной диск 1, который крепится на прокладке 2 болтами 3 к опорному кольцу 4. Колпачки 5 расположены на тарелке в шахматном порядке. Жидкость переливается на лежащую ниже тарелку по периферийным сливным трубкам 6, движется к центру и сли­вается на следующую тарелку по центральной трубке 7, затем снова течет к периферии и т. д.

Колпачковые тарелки  2

Тарелка с диаметральным переливом жидкости (рис. Х1-21, б) представляет собой срезанный с двух сторон диск /, уста­новленный на опорном листе 2. С одной стороны тарелка ограничена прием­ным порогом 3, а с другой — сливным порогом 4 со сменной гребенкой 5, при помощи которой регулируется уровень жидкости на тарелке. В тарел­ке этой конструкции периметр слива увеличен путем замены сливных тру­бок сегментообразными отверстиями, ограниченными перегородками 6, что снижает вспенивание жидкости при ее переливе.

Колпачковые тарелки устойчиво работают при значительных изме­нениях нагрузок по газу и жидкости. К их недостаткам следует отнести сложность устройства и высокую стоимость, низкие предельные нагрузки по газу, относительно высокое гидравлическое сопротивление, трудность очистки. Поэтому колонны с колпачковыми тарелками постепенно выте­сняются новыми, более прогрессивными конструкциями тарельчатых ап­паратов.

Колпачковые тарелки  3

На рис. Х1-22 показана распространенная конструкция штампован­ного капсюльного колпачка. Он состоит из патрубка, который разваль­цован в отверстии тарелки 2, и планки 3, приваренной к верхней части патрубка. К планке с помощью болта 4 крепится колпачок 5 диаметром 80—150 мм, закрепляемый на требуемой высоте контргайкой.

Колпачковые тарелки устойчиво работают при значительных изме­нениях нагрузок по газу и жидкости. К их недостаткам следует отнести сложность устройства и высокую стоимость, низкие предельные нагрузки по газу, относительно высокое гидравлическое сопротивление, трудность очистки. Поэтому колонны с колпачковыми тарелками постепенно выте­сняются новыми, более прогрессивными конструкциями тарельчатых ап­паратов.

Клапанные и балластные тарелки

Принцип действия клапанных тарелок (рис. Х1-23. а, б) состоит в том, что свободно лежащий над отверстием в тарелке круглый клапан 1 с изменением расхода газа своим весом автоматически регули­рует величину площади зазора между клапаном и плоскостью тарелки для прохода газа и тем самым поддерживает постоянной скорость газа при его истечении в барботажный слой. При этом с увеличением скорости газа в колонне гидравлическое сопротивление клапанной тарелки увеличи­вается незначительно. Высота подъема клапана ограничивается высотой кронштейна-ограничителя 2 и обычно не превышает 8 мм. Пластинчатые клапаны (рис. X1-23, в) работают так же, как и круглые. Они имеют фор­му неравнобокого уголка, одна из полок которого (более длинная) зак­рывает прямоугольное отверстие в тарелке.

3 стр., 1175 слов

Адсорбция на границе раздела фаз жидкость газ

... уравнений коллоидной химии, справедливого для любой границы раздела фаз. Широкое применение этого уравнения для исследования адсорбции на поверхности жидкости с газом (или паром) обусловлено относительно легким ... них g <0 и Г <0 (отрицательная адсорбция). К ПИНАВ относятся растворы сильных электролитов. Положительная адсорбция играет огромную роль в природных и промышленных процессах. Она ...

Балластные тарелки (рис. X1-23, г) отличаются по устрой­ству от клапанных тем, что в них между легким круглым клапаном 1 и кронштейном-ограничителем 2 установлен на коротких стойках, опираю­щихся на тарелку, более тяжелый, чем клапан, балласт 3. Клапан начи­нает подниматься при небольших скоростях газа. С дальнейшим увеличе­нием скорости газа клапан упирается в балласт и затем поднимается вместе с ним. Балластные тарелки отличаются более равномерной работой и пол­ным отсутствием провала жидкости во всем интервале скоростей газа.

Достоинства клапанных и балластных тарелок: сравнительно высокая пропускная способность по газу и гидродинамическая устойчивость, по­стоянная и высокая эффективность в широком интервале нагрузок по газу. Последнее достоинство является особенностью клапанных и бал­ластных тарелок по сравнению с тарелками других конструкций. К не­достаткам этих тарелок следует отнести их повышенное гидравлическое сопротивление, обусловленное весом клапана или балласта. Известны разновидности клапанных и балластных тарелок, отличающиеся конструк­цией клапанов (балластов) и ограничителей.

Клапанные и балластные тарелки 1

Пластинчатые тарелки.

Таким образом, пластинчатые та­релки работают так, что в отличие от тарелок других конструкций жид­кость является дисперсной фазой, а газ — сплошной, и контактирование жидкости и газа осуществляется на поверхности капель и брызг. Описанный гидродинамический режим газо­жидкостной дисперсной системы на контактной тарелке может быть опре­делен как капельный или капельно-брызговой.

Пластинчатые тарелки  1

Этот режим позволяет резко повысить нагрузки по жидкости и газу в колоннах с пластинча­тыми тарелками.

Помимо работы пластинчатых тарелок в интенсивном капельном режи­ме к числу их достоинств относятся: низкое гидравлическое сопротивление, возможность работы с загрязненными жидкостями, низкий расход ме­талла при их изготовлении. На тарелках этого типа уменьшается продоль­ное перемешивание жидкости, что приводит к увеличению движущей силы массопередачи. Недостатками пластинчатых тарелок являются: трудность отвода и подвода тепла, снижение эффективности при небольших расходах жидкости. В настоящее время разработан ряд других конструкций таре­лок с однонаправленным движением жидкости и газа, описание которых приводится в специальной литературе.

Колонны с тарелками без сливных устройств (рис. Х1-25).

В тарелке без сливных устройств газ и жидкость проходят через одни и те же от­верстия или щели. На тарелке одновременно с взаимодействием жидкости и газа путем барботажа происходит сток части жидкости на нижераспо­ложенную тарелку — «проваливание» жидкости. Поэтому тарелки та­кого типа обычно называют провальными. К ним относятся дыр­чатые, решетчатые, трубчатые и волнистые тарелки.

4 стр., 1747 слов

Современные прогнозы отечественных и мировых запасов нефти и ...

... если нефтяные скважины всего мира внезапно высохнут. Нефть является самым важным источником энергии в мире, на ее долю приходится ... Разуваев. Россия находится на первом месте по запасам природного газа (47,5 трлн кубометров), за ней со значительным отрывом ... SEC и основывается исключительно на анализе геологических признаков, без учета экономических факторов. По данной классификации, в зависимости ...

Распыливающие абсорберы

В абсорберах этого типа тесный контакт между фазами достигается путем распыливания или разбрызгивания различными способами жидкости в газовом потоке.

Полый распыливающий абсорбер

К достоинствам полых распыливающих абсорберов относятся: простота устройства, низкое гидравлическое сопротивление, возможность работы с загрязненными газами, легкость осмотра, очистки и ремонта. Недостатки этих аппаратов: невысокая эффективность, значительный расход энергии на распыление жидкости, трудность работы с загрязненными жидкостями, необходимость подачи больших количеств абсорбента для увеличения количества капель и соответственно –– поверхности контакта фаз, низкие допустимые скорости газа, значения которых ограничены уносом капель жидкости.

Распыливающие абсорберы применяются главным образом для поглощения хорошо растворимых газов, т.к. вследствие высокой относительной скорости фаз и турбулизации газового потока коэффициенты массоотдачи в газовой фазе (b г ) в этих аппаратах достаточно высоки.

Полый распыливающий абсорбер 1

прямоточные распыливающие абсорберы,

механические абсорберы,

Механические абсорберы компактнее и эффективнее распыливающих абсорберов других типов. Однако они значительно сложнее по устройству и требуют больших затрат энергии на осуществление процесса.

Во многих случаях в системах газ –– жидкость для диспергирования одной фазы в другой оказывается достаточным использование энергии потока газа, взаимодействующего с жидкостью, и подвод внешней энергии для этой цели нецелесообразен.

Касаткин А.Г. «Основные процессы и аппараты химической технологии»; изд. «Химия», М., 1971.