Возможности электронно -вычислительных машин уже никого не удивляют. Компьютеризация различных областей человеческой деятельности, помимо прямого эффекта от внедрения вычислительной техники, зачастую порождает новые классы программных продуктов и технологии их разработки. Любая технология — это прежде всего поле интеллектуальной деятельности для специалистов, однако, в отличии от других видов деятельности технологии разработки программных продуктов немедленно становятся объектами автоматизации, что выводит соответствующий раздел программирования на новый уровень развития.
Типичную эволюцию от конкретных программ до инструментальных средств разработки прошли системы, основанные на знаниях, и в первую очередь — экспертные системы, предназначенные для решения задач из тех областей, где решающую роль играют знания и опыт профессиональной деятельности. В экспертных системах поиск решений осуществляется посредством имитации рассуждений, присущих выдающимся профессионалам. Формализованные знания составляют ядро экспертной системы — ее базу знаний. Остальные блоки системы реализуют функции преобразования знаний и определяются не столько содержимым знаний, сколько свойствами их формальных структур.
1. Понятие искусственного интеллекта. Представление знаний и разработка систем, основанных на знаниях
1.2. Представление знаний
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении) и в искусственном интеллекте. В когнитологии он связан с тем, как люди хранят и обрабатывают информацию. В Искусственном интеллекте (ИИ) основная цель — научиться хранить знания таким образом, чтобы программы могли обрабатывать их и достигнуть подобия человеческого интеллекта. Исследователи ИИ используют теории представления знаний из когнитологии. Такие методы как фреймы, правила и семантические сети пришли в ИИ из теорий обработки информации человеком. Так как знание используется для достижения разумного поведения, фундаментальной целью дисциплины представления знаний является поиск таких способов представления, которые делают возможным процесс логического вывода, то есть создание выводов из знаний.
Некоторые вопросы, которые возникают в представлении знаний с точки зрения ИИ:
- Как люди представляют знания?
- Какова природа знаний и как мы их представляем?
- Должна ли схема представления связываться с частной областью знаний, или она должна быть общецелевой?
- Насколько выразительна данная схема представления?
- Должна ли быть схема декларативной или процедурной?
Было очень немного обсуждения вопросов представления знаний и исследования в этой области. Есть хорошо известные проблемы, такие как «spreading activation, » (задача навигации в сети узлов) «категоризация» (это связано с выборочным наследованием; например вездеход можно считать специализацией (особым случаем) автомобиля, но он наследует только некоторые характеристики) и «классификация». Например, помидор можно считать как фруктом, так и овощем.
Подготовка технического задания на разработку информационной ...
... Основания для разработки Основанием для разработки технического задания является задание к курсовой работе по курсу «Проектирование информационных систем». Наименование темы разработки – «Разработка информационной системы фирмы, ... пользователя. Сотрудник, отвечающий за расчетами с заказчиками, должен обладать знаниями бухгалтерского учета и отчетности. Сотрудник, отвечающий за создание схем ...
В области искусственного интеллекта, решение задач может быть упрощено правильным выбором метода представления знаний. Определенный метод может сделать какую-либо область знаний легко представимой. Например диагностическая экспертная система Мицин использовала схему представления знаний основанную на правилах. Неправильный выбор метода представления затрудняет обработку. В качестве аналогии можно взять вычисления в индо-арабской или римской записи. Деление в столбик проще в первом случае и сложнее во втором. Аналогично, не существует такого способа представления, который можно было бы использовать во всех задачах, или сделать все задачи одинаково простыми.
Проблема формирования баз знаний является сложной и многогранной. Если ограничить рассмотрение этой проблемы задачей извлечения личных знаний эксперта, то можно сформулировать основные требования и принципы построения программных систем, автоматизирующих процесс формирования баз знаний. Системы такого рода именуются автоматизированными системами инженерии знаний.
1.3. Задача формирования баз знаний
При всей претенциозности своего названия, инженерия знаний является дисциплиной сугубо прозаической, в ее задачу входит разработка практически полезных программ для слабо «математизированных» областей человеческой деятельности. Главным аргументом в пользу плодотворности такого подхода является факт существования в реальной жизни института экспертов — классных профессионалов, способных решать плохо формализуемые задачи из той или иной проблемной области.
С точки зрения инженерии знаний, в любой прикладной программе (по-крайней мере теоретически) можно выделить компоненту, содержащую знания о проблемной области. Именно эта компонента, именуемая базой знаний, определяет практическую ценность программы. Построение базы знаний требует специальных изысканий в проблемной области, в то время как остальные блоки программы находятся полностью в ведении программиста.
В настоящее время известны четыре основных способа представления знаний, из которых можно конструировать «гибридные» способы представления знаний.
Продукционные системы, Семантические сети
- Фреймы
Логические исчисления, Комбинированные способы представления знаний, Модели проблемных областей
2. Распознавание образов и машинный перевод
2.1 Понятие образа
Образ, класс — классификационная группировка в системе классификации, объединяющая определенную группу объектов по некоторому признаку. Образное восприятие мира — одно из свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию информации, т. е. разбиваем их на группы похожих, но не тождественных явлений. Это свойство мозга позволяет сформулировать такое понятие, как образ.
Автоматизация процесса распознавания объектов застроенных территорий
... возможности; выделены основные объекты дешифрирования застроенных территорий, проанализированы их демаскирующие признаки; рассмотрены перспективы автоматизации процесса дешифрирования; проанализирован алгоритм автоматизированного распознавания образов на основе нейросетевых методов. Методологическую базу работы составляют эмпирические (наблюдение), ...
Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания.
2.2 Проблема распознавания образов
Распознавание образов — это задача идентификации объекта или определения каких-либо его свойств по его изображению (оптическое распознавание) или аудиозаписи (акустическое распознавание).
В процессе биологической эволюции многие животные с помощью зрительного и слухового аппарата решили эту задачу достаточно хорошо. Создание искусственных систем с функциями распознавания образов остаётся сложной технической проблемой.
Рис. 2.1. Пример объектов обучения.
В целом проблема распознавания образов (ПРО) состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и другими реакциями — на все объекты отличимых образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов. В качестве объектов обучения могут быть либо картинки (рис. 2.1), либо другие визуальные изображения (буквы, цифры).
Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.
Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи классификации сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными задачами. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, упорядоченную информацию.
Выбор исходного описания объектов является одной из центральных задач проблемы распознавания образов. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной и, наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработку информации, либо вообще к отсутствию решения.
Автоматизированные системы управления непроизводственными объектами: ...
... системы управления В состав также могут входить средства распознавания образов. Под образом понимается структурированное описание изучаемого объекта ... лучших методов проектирования, производства и управления. Исследовательская ... Объектом данной работы будет являться изучение автоматизированных систем управления непроизводственными объектами. Предмет исследования — автоматизированные охранные системы, ...
2.5 Обучение, самообучение и адаптация
Обучение — это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация — это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий. Все картинки, представленные на рис. 2.1, характеризуют задачу обучения. В каждой из этих задач задается несколько примеров (обучающая последовательность) правильно решенных задач. Если бы удалось подметить некое всеобщее свойство, не зависящее ни от природы образов, ни от их изображений, а определяющее лишь их способность к разделимости, то наряду с обычной задачей обучения распознаванию с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу, можно было бы поставить иную классификационную задачу — так называемую задачу обучения без учителя. Задачу такого рода на описательном уровне можно сформулировать следующим образом: системе одновременно или последовательно предъявляются объекты без каких-либо указаний об их принадлежности к образам.
Входное устройство системы отображает множество объектов на множество изображений и, используя некоторое заложенное в нее заранее свойство разделимости образов, производит самостоятельную классификацию этих объектов. После такого процесса самообучения система должна приобрести способность к распознаванию не только уже знакомых объектов (объектов из обучающей последовательности), но и тех, которые ранее не предъявлялись. Процессом самообучения некоторой системы называется такой процесс, в результате которого эта система без подсказки учителя приобретает способность к выработке одинаковых реакций на изображения объектов одного и того же образа и различных реакций на изображения различных образов. Роль учителя при всём этом состоит лишь в подсказке системе некоторого объективного свойства, одинакового для всех образов и определяющего способность к разделению множества объектов на образы. Таким объективным свойством является свойство компактности образов. Взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить множество точек. Эта информация и определяет то свойство разделимости образов, которое оказывается достаточным для самообучения системы распознаванию образов.
Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть » поощрениями» и » наказаниями». Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.
Адаптация — это процесс изменения параметров и структуры системы, а возможно, и управляющих воздействий на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.
Возможен способ построения распознающих машин, основанный на различении каких-либо признаков подлежащих распознаванию фигур. В качестве признаков могут быть выбраны различные особенности фигур, например, их геометрические свойства (характеристики составляющих фигуры кривых), топологические свойства ( взаимное расположение элементов фигуры) и т.п. Известны распознающие машины, в которых различение букв или цифр производится, по так называемому “методу зондов” (рис. 2.2), т.е. по числу пересечений контура фигуры с несколькими особым образом расположенными прямыми.
Понятие о системах производственного обучения
... помнить, что производственное обучение должно подчиняться учебно-производственным задачам. Принцип профессионально- политехнической направленности. В процессе производственного обучения и теоретического обучения необходимо раскрывать ... учащихся; отсутствие элементов сознательности и осмысленности в усвоении учащимися производственных действий. 5. Операционно-комплексная система Нашла широкое ...
Рис. 2.2 Схема расположения зондов для распознавания цифр.
Если проектировать цифры на поле с зондами, то окажется, что каждая из цифр пересекает вполне определенные зонды, причем комбинации пересекаемых зондов различны для всех десяти цифр. Эти комбинации и используются в качестве признаков, по которым производится различение цифр. Такие машины успешно справляются, например, с чтением машинописного текста, но их возможности ограничены тем шрифтом (или группой сходных шрифтов), для которого была разработана система признаков. Работа по созданию набора эталонных фигур или системы признаков должна производиться человеком. Качество работы машины, т. е. надежность “узнавания” предъявляемых фигур определяется качеством этой предварительной подготовки и без участия человека не может быть повышено. Описанная машина не являются обучающейся машиной.
Моделирование процесса обучения подразумевает обучение, которому не предшествует сообщение машине каких-либо сведений о тех образах, распознаванию которых она должна научиться; само обучение заключается в предъявлении машине некоторого конечного числа объектов каждого образа. В результате обучения машина должна оказаться способной узнавать сколь угодно большое число новых объектов, относящихся к тем же образам. Таким образом, имеется в виду следующая схема экспериментов:
- а) никакие сведения о подлежащих классификации образах в машину заранее не вводятся;
- б) в ходе обучения машине предъявляется некоторое количество объектов каждого из подлежащих классификации образов и (при моделировании процесса обучения “с учителем”) сообщается, к какому образу относится каждый объект;
в) машина автоматически обрабатывает полученную информацию, после чего
г) с достаточной надежностью различает сколь угодно большое число новых, ранее ей не предъявлявшихся объектов из образов.
Машины, работающие по такой схеме, называются узнающими машинами.
2.6 Преобразование изображений в цифровой код
Для того чтобы ввести изображение в машину, нужно перевести его на машинный язык, т.е. закодировать, представить в виде некоторой комбинации символов, которыми может оперировать машина. Кодирование плоских фигур можно осуществить самым различным образом. Лучше стремиться к в наибольшей мере“ естественному” кодированию изображений. Будем рисовать фигуры на некотором поле, разбитом вертикальными и горизонтальными прямыми на одинаковые элементы — квадратики. Элементы, на которые упало изображение, будем сплошь зачернять, остальные — оставлять белыми. Условимся обозначать черные элементы единицей, белые — нулем. Введем последовательную нумерацию всех элементов поля, например, в каждой строке слева направо и по строкам сверху вниз. Тогда каждая фигура, нарисованная на таком поле, будет однозначно отображаться кодом, состоящим из стольких цифр (единиц и нулей), сколько элементов содержит поле.
Методика решения задач по теоретическим основам химической технологии
... химических знаний. Целью дипломной работы Для достижения цели, нами поставлены следующие задачи: 1. Определить тематику задач дисциплины «Прикладная химия» в рамках раздела «Теоретические основы химической технологии». ... В кибернетике для определения задачи вместо понятия «субъект» вводится понятие «решающая система», это расширяет возможности средств решения задачи: задачу может решать машина. ...
Рис 2.3 Примеры проецирования и кодирования изображений.
Такое кодирование (рис. 2.3) считается “ естественным” потому, что разбиение изображения на элементы лежит в основе работы нашего зрительного аппарата. Действительно, сетчатка глаза состоит из большого числа отдельных чувствительных элементов (так называемых палочек и колбочек), связанных нервными волокнами со зрительными отделами головного мозга. Чувствительные элементы сетчатки передают по своим нервным волокнам в головной мозг сигналы, интенсивность которых зависит от освещенности данного элемента. Таким образом, изображение, спроектированное оптической системой глаза на сетчатку, разбивается палочками и колбочками на отдельные участки, и по элементам в некотором коде передается в мозг. Отдельные элементы поля называются рецепторами, а само поле — полем рецепторов.
Совокупность всех плоских фигур, которые можно изобразить на поле рецепторов, составляет некое множество. Каждая конкретная фигура из этой совокупности есть объект этого множества. Любому их таких объектов соответствует определенный код. Точно также любому коду соответствует определенное изображение на поле рецепторов. Взаимно однозначное соответствие между кодами и изображениями позволит оперировать только кодами, помня о том, что изображение всегда может быть воспроизведено по его коду.
Емкость ИНС — число образов, предъявляемых на входы ИНС для распознавания. Для разделения множества входных образов, например, по двум классам достаточно всего одного выхода. При этом каждый логический уровень — «1» и «0» — будет обозначать отдельный класс. На двух выходах можно закодировать уже 4 класса и так далее. Для повышения достоверности классификации желательно ввести избыточность путем выделения каждому классу одного нейрона в выходном слое или, что еще лучше, нескольких, каждый из которых обучается определять принадлежность образа к классу со своей степенью достоверности, например: высокой, средней и низкой. Такие ИНС позволяют проводить классификацию входных образов, объединенных в нечеткие (размытые или пересекающиеся) множества. Это свойство приближает подобные ИНС к условиям реальной жизни.
3. Нейрокомпьютеры и сети
3.1 Нейрокомпьютеры
Нейрокомпьютеры — это системы, в которых алгоритм решения задачи представлен логической сетью элементов частного вида — нейронов с полным отказом от булевских элементов типа И, ИЛИ, НЕ. Как следствие этого введены специфические связи между элементами, которые являются предметом отдельного рассмотрения. В отличие от классических методов решения задач нейрокомпьютеры реализуют алгоритмы решения задач, представленные в виде нейронных сетей. Это ограничение позволяет разрабатывать алгоритмы, потенциально более параллельные, чем любая другая их физическая реализация. Нейрокомпьютер — это вычислительная система с архитектурой MSIMD, в которой реализованы два принципиальных технических решения: упрощен до уровня нейрона процессорный элемент однородной структуры и резко усложнены связи между элементами; программирование вычислительной структуры перенесено на изменение весовых связей между процессорными элементами. Общее определение нейрокомпьютера может быть представлено в следующем виде. Нейрокомпьютер — это вычислительная система с архитектурой аппаратного и программного обеспечения, адекватной выполнению алгоритмов, представленных в нейросетевом логическом базисе.
Выбор комплекса задач автоматизации и характеристика существующих ...
... на работу. Большая часть покупателей имеет отношение к компьютерам и постоянно пользуется услугами Сети, таким образом, было принято решение о создании Интернет-магазина. Таким ... клиента. Т.о. задачами данной работы являются: 1) разработка мобильного и платформо-независимого приложения; 2) представление пользователю описания товара в структурированных категориях; автоматизация системы приема ...
3.2 Что такое нейронные сети?
Каждый нейрон получает сигналы от соседних нейронов по специальным нервным волокнам. Эти сигналы могут быть возбуждающими или тормозящими. Их сумма составляет электрический потенциал внутри тела нейрона. Когда потенциал превышает некоторый порог, нейрон переходит в возбужденное состояние и посылает сигнал по выходному нервному волокну. Отдельные искусственные нейроны соединяются друг с другом различными методами. Это позволяет создавать разнообразные нейронные сети с различной архитектурой, правилами обучения и возможностями. Термин “искусственные нейронные сети” у многих ассоциируется с фантазиями об андроидах и бунте роботов, о машинах, заменяющих и имитирующих человека. Это впечатление усиливают многие разработчики нейросистем, рассуждая о том, как в недалеком будущем, роботы начнут осваивать различные виды деятельности, просто наблюдая за человеком. Если переключиться на уровень повседневной работы, то нейронные сети это всего-навсего сети, состоящие из связанных между собой простых элементов формальных нейронов. Большая часть работ по нейроинформатике посвящена переносу различных алгоритмов решения задач на такие сети. В основу концепции положена идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для передачи сигнала. Коротко эту мысль можно выразить так: “структура связей все, свойства элементов ничто”. Совокупность идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (connection связь).
С реальным мозгом все это соотносится примерно так же, как карикатура или шарж со своим прототипом. Важно не буквальное соответствие оригиналу, а продуктивность технической идеи. С коннекционизмом тесно связан следующий блок идей:
- однородность системы (элементы одинаковы и чрезвычайно просты, все определяется структурой связей);
- надежные системы из ненадежных элементов и “аналоговый ренессанс” использование простых аналоговых элементов;
— “голографические” системы при разрушении случайно выбранной части система сохраняет свои свойства. Предполагается, что широкие возможности систем связей компенсируют бедность выбора элементов, их ненадежность и возможные разрушения части связей.
Для описания алгоритмов и устройств в нейроинформатике выработана специальная “схемотехника”, в которой элементарные устройства (сумматоры, синапсы, нейроны и т.п.) объединяются в сети, предназначенные для решения задач. Для многих начинающих кажется неожиданным, что ни в аппаратной реализации нейронных сетей, ни в профессиональном программном обеспечении эти элементы вовсе не обязательно реализуются как отдельные части или блоки. Используемая в нейроинформатике идеальная схемотехника представляет собой особый язык описания нейронных сетей и их обучения. При программной и аппаратной реализации, выполненные на этом языке описания, переводятся на более подходящие языки другого уровня. 4. Экспертные системы (ЭС), их структура и классификация. Инструментальные средства построения ЭС. Технология разработки ЭС
Разработка программы паблик рилейшнз: система PR и методы
... работы. Целью данной работы является изучение системы Паблик Рилейшнз используемой предприятием и определение рекомендаций по ее совершенствованию. Задачи данной работы: Анализ маркетинговой деятельности корпорации "Amway". Определение основных теоретико-методологических аспектов проблемы. Исследование системы PR и методов ...
По мнению ведущих специалистов, в недалекой перспективе ЭС найдут следующее применение:
- ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;
— технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей. ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.
Неформализованные задачи обычно обладают следующими особенностями:
- ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;
- ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
- большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
— динамически изменяющимися данными и знаниями. Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются в наибольшей меремассовым классом задач, решаемых ЭВМ.
Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).
Интегрированность.
Класс «экспертные системы» сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям. Полезными могут оказаться следующие классификации (рис. 4.1).
Рис. 4.1. Классификация экспертных систем
Диагностика.
Планирование.
Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа — это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование.
Классификация по связи с реальным временем
Квазидинамические ЭС
Классификация по степени интеграции с другими программами
База данных (рабочая память)
Рис. 4.2. Структура статистической ЭС
Эксперт
Приложение
Рис. 4.4. Технология разработки ЭС
5. Использование и поддержка ЭС. Реижиниринг бизнеса
5.1 Использование финансовых экспортных системМножество предприятий устанавливают ЭС для решения задач в таких областях как: торги на фондовой бирже, автоматическое понимание новостей, кредитный анализ, управление рисками, построение портфелей кредитов и инвестиций, оценка рейтинга банков, автоматизация аудита, предсказание изменений на финансовом рынке и т.д.Примерами этому является целый класс консультативных ЭС: Bear, Sterns & Company’s Broker Monitoring System, Athena Group’s Portfolio Advisor и Trader’s Assistant, совместно разработанные корпорациями Author D. Little Corporation, Knowledge-Based Network Corporation и еще шестью финансовыми институтами. Японский Sanwa Bank, один из крупнейших мировых банков, применяет экспертную систему Best Mix для улучшения качества своей информации по инвестициям.ЭС Nikko Portfolio Consultation Management System, разработанная для внутреннего использования фирмой Nikko Securities, Ltd., помогает управляющим фондами выбрать оптимальный портфель для своих клиентов. Данная система основана на базе данных с информацией за пять лет продаж акций и на системе с новой теорией управления портфелем, которая вычисляет и оптимизирует портфель ценных бумаг для страховки от различных рисков. Управляющие фондами освобождаются от рутинных вычислений и, таким образом, имеют возможность более быстро составить оптимальный портфель ценных бумаг. Компания IDS Financial Services, подразделение финансового планирования American Express Company, классифицировали финансовые экспертизы своих лучших управляющих для создания экспертной системы, названной Insight. IDS включила экспертизы лучших управляющих в свои средства, т.е. экспертную систему, доступную всем своим планировщикам. Одним из основных результатов применения экспертной системы в компании IDS стало то, что процент покинувших фирму клиентов упал более чем наполовину.Перечислим характеристики некоторых конкретных ЭС этого класса.1. FLiPSiDE: Система логического программирования финансовой экспертизы. Предприятие-разработчик: Case Western Reserve University Решаемые задачи: мониторинг состояния рынка ценных бумаг; мониторинг состояния текущего портфеля ценных бумаг; поддержка обзора будущих условий рынка; планирование и выполнение продаж.Краткие характеристики: применение оригинальной парадигмы “Классной доски”, описанной Ньюэллом; язык Пролог в качестве платформы программирования; представление данных на “Классной доске” в качестве исходных данных для различных знаний;2. Splendors: Система управления портфелем ценных бумаг реального времени. Решаемые задачи: достижение разнообразных инвестиционных целей в условиях быстро меняющихся данных. Краткие характеристики: система реального времени, использование специализированного языка высокого уровня Profit, большая гибкость в создании портфеля для опытных программистов на C, возможность создания портфеля непрограммирующему финансовому аналитику.Система позволяет формировать оптимальные инвестиционные портфели в реальном масштабе за счет игры на учете быстрых изменений на фондовой бирже.3. PMIDSS: Система поддержки принятия решений при управлении портфелем. Предприятие-разработчик: Финансовая группа Нью-Йоркского университета. Решаемые задачи: выбор портфеля ценных бумаг, долгосрочное планирование инвестиций. Краткие характеристики: смешанная система представления знаний, использование разнообразных механизмов вывода: логика, направленные семантические сети, фреймы, правила.4. Le Courtier: Система ассистент-эксперт для менеджера портфеля. Предприятие-разработчик: Cognitive System Inc. Решаемые задачи: помощь инвесторам в определении своих инвестиционных целей, управление портфелем. Краткие характеристики: использование правил, мощный естественно-языковый интерфейс.5. PMA: Советчик управляющему портфелем. Предприятие-разработчик: Athena Group. Решаемые задачи: формирование портфеля, оказание рекомендаций по сопровождению портфеля. Краткие характеристики: обеспечение качественного обоснования результатам применения различных численных методов.6. ArBoR: Вычислительная модель рейтинга облигаций. Предприятие-разработчик: College of Business Administration Univercity of Nebraska. Решаемые задачи: Данная система создана для конструирования вычислительной модели в области рейтинга облигаций и для применения модели в качестве экспертной системы. Краткие характеристики: применение качественного и количественного анализа, использование стандартной оболочки ЭС.7. Intelligent Hedger: основанный на знаниях подход в задачах страхования от риска. Предприятие-разработчик: Information System Department, New York University. Решаемые задачи: проблема огромного количества постоянно растущих альтернатив страхования от рисков, быстрое принятие решений менеджерами по рискам в ускоряющемся потоке информации, а также недостаток соответствующей машинной поддержки на ранних стадиях процесса разработки систем страхования от рисков предполагает обильную сферу различных оптимальных решений для менеджеров по риску. В данной системе разработка страхования от риска сформулирована как многоцелевая оптимизационная задача. Данная задача оптимизации включает несколько сложностей, с которыми существующие технические решения не справляются.Краткие характеристики: система использует объектное представление, охватывающее глубокие знания по управлению риском и облегчает эмуляцию первичных рассуждений управляющих риском, полезных для выводов и их объяснений.8. Узко ориентированная система поддержки принятия решения для выбора стратегий инвестиций. Предприятие-разработчик: Intelligent System Laboratory Science Univercity of Tokyo. Решаемые задачи: С приходом в набор финансовых инструментов понятий “выбор” и “будущее”, у инвесторов появилась возможность формировать набор стратегий, отвечающих целям их инвестиций. При этом, эта возможность порождает трудную задачу нахождения необходимой стратегии среди большого числа стратегий инвестиций. Представлена интеллектуальная система поддержки принятия решения для генерации необходимых стратегий инвестирования с использованием нотации ограниченной удовлетворительности, которая широко применяется в задачах поиска. В данной системе ограничения играют роль навигации для автоматического порождения сложных стратегий через абстрактное сравнение с профилем вкладчиков. Абстрактное сравнение может рассматриваться как поиск метода для производства качественно обоснованных стратегий, описывающих набор предложений для покупки или продажи без цифровой информации. Т.к. такая техника может быть использована как предпроцессор для количественного анализа типа линейного программирования для получения оптимального решения, предлагаемая система является мостом для плавного перехода между качественным и количественным анализами.Краткие характеристики: применение качественного анализа для получения возможных качественных решений (интуитивные решения) и количественного анализа для нахождения оптимального решения с помощью симплексного метода линейного программирования.9. Явные рассуждения в прогнозировании обмена валют. Предприятие-разработчик: Department of Computer Science City Polytechnic of Hong Kong. Решаемые задачи: Представляет новый подход в прогнозировании обмена валют, основанный на аккумуляции и рассуждениях с поддержкой признаков, присутствующих для фокусирования на наборе гипотез о движении обменных курсов. Представленный в прогнозирующей системе набор признаков — это заданный набор экономических значений и различные наборы изменяющихся во времени параметров, используемых в модели прогнозирования.Краткие характеристики: математическая основа примененного подхода базируется на теории Демпстера-Шафера.10. Nereid: Система поддержки принятия решений для оптимизации работы с валютными опционами. Предприятие-разработчик: NTT Data, The Tokai Bank, Science Univercity of Tokyo. Решаемые задачи: система облегчает дилерскую поддержку для оптимального ответа из возможных представленных вариантов. Система более практична и дает лучшие решения, чем обычные системы принятия решений.
Системы и методы диагностирования
... для разработки программы дальнейших исследований по идентификации обнаруженных изменений вибрационного состояния. Методы совместного мониторинга и диагностирования машин и оборудования. Эти методы широко используются в стационарных системах мониторинга и диагностики, ... изготовления и сборки различных узлов и деталей. Задачи создания систем автоматического диагностирования качества сборки машин перед ...
Краткие характеристики: система разработана с использованием фреймовой системы CLP, которая легко интегрирует финансовую область в приложение ИИ. Предложен смешанный тип оптимизации, сочетающий эвристические знания с техникой линейного программирования. Система работает на Sun-станциях.
5.2 ЭС, основанные на примерах
ЭС, основанные на примерах, можно по принципам работы можно разделить на две группы: использующие нейронные сети и использующие алгоритм индуктивного обобщения ID3. Первые в основном используются как предварительно обученный на примерах классификатор, у которого при подаче на его вход набора значений исходных финансовых параметров на выходе появляется искомое решение по данной финансовой ситуации. Вторые по наборам примеров формируют дерево решений, из которого затем строятся соответствующие для принятия решений правила. Ниже мы приведем 2 типичных примера ЭС обоих групп.
1. S&PCBRS: Нейронный симулятор для оценки рейтинга ценных бумаг. Предприятие-разработчик: Chase Manatten Bank, Standart & Poor’s Corp. Решаемые задачи: оценка рейтинга ценных бумаг по данным о фирмах эмитентах, формирование корректной рейтинговой шкалы.
Краткие характеристики: представление задачи оценки рейтинга как задачи классификации, отбор данных о фирмах эмитентах и формирование обучающего материала, выбор нейроклассификатора, его обучение и тестирование, сравнение с оценками экспертов, использование нейросетевой парадигмы Couter-Propagation, вероятность правильного предсказания рейтинга 84%.
2. ISPMS: Интеллектуальная система управления портфелем ценных бумаг. Решаемые задачи: формирование портфеля акций, обеспечивающего баланс между риском и предполагаемым доходом.
Краткие характеристики: использование оптимизационной модели квадратичного программирования Марковица, баз данных и баз знаний по фирмам-эмитентам и отраслям, наличие подсистемы обучения на прошлом опыте, основанной на извлечении правил из большого количества фактов, учет знаний эксперта и личных предпочтений инвестора в оптимизационной модели. Вероятность правильного предсказания резкого изменения на фондовой бирже в пределах 68% — 84%.
5.3 Реинфиниринг бизнеса
Перестройка работы предприятий в сфере процессов, связанных с проектированием и подготовкой производства новых изделий, называемая реинжинирингом и предпринимаемая в целях резкого повышения эффективности функционирования предприятий в современных условиях, базируется на организационных изменениях и использовании новых информационных технологий.
При анализе существующего и разработке нового бизнеса важную роль играет построение моделей компании и протекающих в ней бизнес-процессов. Модели могут различаться степенью детализации процессов, формой их представления, учетом только статических или также динамических факторов и др. Следует отметить, что все известные подходы к моделированию бизнеса принадлежат к семейству методов моделирования сложных информационных систем.
К традиционным средствам построения моделей сложных систем относится методология SADT (Structured Analysis Design Technique).
Она была создана в начале 70-х годов с целью унифицировать подходы к описанию сложных систем. SADT включает как концептуальный подход к построению моделей систем, так и набор правил и графических обозначений для их описания. Предлагаемые методы построения функциональных моделей, где описание систем осуществляется с точки зрения выполняемых ими функций, получили название методологии IDEF0. Существуют также специальные методологии для построения информационных моделей, описывающих потоки информации (IDEFIX) и динамических моделей, отображающих причинно-следственные связи между объектами системы (IDEF/CPN).
К более современным средствам моделирования, появившимся в середине 90-х годов, относится методология RUP (Rational Unified Process).
Эта методология, разработанная компанией Rational Software Corp., под-
держивает итеративный процесс создания сложной информационной системы на основе объектно-ориентированного подхода, с использованием диаграмм UML (Unified Modeling Language) для визуального моделирования предметной области. Нотация диаграмм UML и методы использования UML при реинжиниринге бизнес-процессов проектирования и подготовки производства будут рассмотрены в последующих разделах данного пособия.
Наряду с UML, для визуального моделирования существуют и другие нотации, реализованные, например, в системах ARIS и ADONIS. Система ADONIS позволяет выполнять не только визуальное, но и имитационное моделирование бизнес-процессов, ее возможности также рассматриваются ниже.
Информационные системы поддержки новых бизнес-процессов.
Выше отмечалось, что использование новых информационных технологий является неотъемлемой частью реинжиниринга. При этом модели новых бизнес-процессов непосредственно реализуются в среде информационной системы поддержки (ИСП) нового бизнеса. Важность ИСП состоит не только в том, что она является необходимым элементом реинжиниринга, а еще и в том, что зачастую применение ИСП во многом определяет технологию ведения нового бизнеса. ИСП представляет собой специально разрабатываемое программное обеспечение — программную систему, которая строится на основе применения соответствующих инструментальных средств.
В сфере проектирования новых изделий роль ИСП играют конструкторские системы автоматизированного проектирования (САПР-К).
В сфере технологической подготовки производства роль ИСП играют автоматизированные системы технологической подготовки производства (АСТПП).
К инструментальным средствам создания САПР-К и АСТПП относятся CAD/CAM, CAE и PDM-системы. При этом CAD/CAM и САЕ-системы становятся средствами для автоматизации выполнения проектных процедур, а PDM-система — средством для управления процессами проектирования и подготовки производства. Одновременно PDM-система является базовым средством, с помощью которого реализуется единое информационное пространство для всех этапов жизненного цикла изделия (ЖЦИ).
Наиболее мощные и полнофункциональные комплексы CAD/CAM/CAE/PDM получили название PLM-решений (Product Data Management -управление данными об изделии).
6. Стратегия получения знаний. Практические методы извлечения знаний
6.1 Стратегия получения знаний
Выделяют три стратегии получения знаний — приобретение знаний, извлечение знаний и обнаружение знаний в базах данных:
Извлечением
Рис. 6.1. Процесс обнаружения знаний в БД
Стратегия KDD все более выдвигается на первую роль. Это во многом обусловлено быстрым развитием разнообразных хранилищ данных (data warehouse) — собраний данных, отличающихся предметной ориентированностью, интегрированностью, поддержкой хронологии, неизменяемостью, и предназначенных для последующей аналитической обработки.
Специфика современных требований к обработке данных с целью обнаружения знаний следующая:
- Данные имеют неограниченный объем
- Данные являются разнородными (количественными, качественными, категориальными)
- Результаты должны быть конкретны и понятны
6.2 Практические методы извлечения данных
Классификация методов извлечения знаний (рис. 6.2) позволит инженерам по знаниям, в зависимости от конкретной задачи и ситуации, выбрать конкретный метод. Из предложенной схемы классификации видно, что основной принцип деления связан с источником знаний. Коммуникативные методы охватывают все виды контактов с живым источником знаний — экспертом, а текстологические касаются методов извлечения знаний из документов (методик, пособий, руководств) и специальной литературы (статей, монографий, учебников).Разделение этих групп методов на верхнем уровне классификации не означает их антагонистичности, обычно инженер по знаниям комбинирует различные методы, например, сначала изучает литературу, затем беседует с экспертами, или наоборот.
Рис. 6.2. Классификация методов извлечения знаний.
В свою очередь, коммуникативные методы можно также разделить на две группы: активные и пассивные. Пассивные методы подразумевают, что ведущая роль в процедуре извлечения знаний как бы передается эксперту, а инженер по знаниям только протоколирует рассуждения эксперта во время его реальной работы по принятию решений или записывает то, что эксперт считает нужным самостоятельно рассказать в форме лекции. В активных методах, напротив, инициатива полностью в руках инженера по знаниям, который активно контактирует с экспертом различными способами — в играх, диалогах, беседах за «круглым столом» и т.д.
Пассивные методы на первый взгляд достаточно просты, но на самом деле требуют oт инженера по знаниям умения четко анализировать «поток сознания» эксперта и выявлять в нем значимые фрагменты знаний. Отсутствие обратной связи (пассивность инженера по знаниям) значительно ослабляет эффективность этих методов, чем и объясняется их обычно вспомогательная роль при активных методах.
Активные методы можно разделить на две группы в зависимости от числа экспертов, отдающих свои знания. Если их число больше одного, то целесообразно помимо серии индивидуальных контактов с каждым применять и методы групповых обсуждений предметной области. Такие групповые методы обычно активизируют мышление участников дискуссий и позволяют выявлять весьма нетривиальные аспекты их знаний. В свою очередь, индивидуальные методы на сегодняшний день остаются ведущими, поскольку столь деликатная процедура, как «отъем знаний», не терпит лишних свидетелей.
Отдельно следует сказать об играх. Игровые методы сейчас широко используются и социологии, экономике, менеджменте, педагогике для подготовки руководителей, учителей, врачей и других специалистов. Игра — это особая форма деятельности и творчества, где человек раскрепощается и чувствует себя намного свободнее, чем в обычной трудовой деятельности.
Заключение
В ходе выполнения работы были сделаны следующие выводы:Экспертная система — это интеллектуальная программа, способная делать логические выводы на основании знаний в конкретной предметной области и обеспечивающая решение специфических задач.К экспертным системам предъявляются следующие требования: использование знаний, связанных с конкретной предметной областью; приобретение знаний от эксперта; определение реальной и достаточно сложной задачи; наделение системы способностями эксперта.Структура экспертной системы представлена следующими структурными элементами: база знаний, механизм логических выводов, пользовательский интерфейс, модуль приобретения знаний, модуль советов и объяснений.Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение, экономика и финансы.Множество предприятий устанавливают ЭС для решения задач в таких областях как: торги на фондовой бирже, автоматическое понимание новостей, кредитный анализ, управление рисками, построение портфелей кредитов и инвестиций, оценка рейтинга банков, автоматизация аудита, предсказание изменений на финансовом рынке и т.д. Были рассмотрены в наибольшей мерераспространенные экспертные системы в области финансов.
1. http://www.park.glossary.ru/serios/read_05.php
2.
3. http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D0%B9
4. http://revolution. /programming/00029613_0.html
5.
6. http://window.edu.ru/window_catalog/pdf2txt?p_id=28644
7.
8. http://www.inftech.webservis.ru/it/database/datamining/ar4.html
9.